数学教学教案模板6篇

时间:2022-12-17 作者:couple

教案在日常教学工作中起着相辅相成的作用,教案是老师为了保证上课进度提前制订的应用文种,365文档网小编今天就为您带来了数学教学教案模板6篇,相信一定会对你有所帮助。

数学教学教案模板6篇

数学教学教案模板篇1

教学内容:

连乘、乘加、乘减和把整数乘法运算定律推广到小数。

教学目标:

1.掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。

2.理解整数乘法的交换律、结合律、分配律对于小数同样适用。

3.提高学生的类推能力,培养学生知识间存在着内在联系的思想。

教学过程:

课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。

一、复习旧知

1.出示投影,先回答问题,再计算。

(1)12×5×60

(2)30×7+85

(3)250×4-200

教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?

学生回答后,在练习本上计算结果。

订正:(1)3600 (2)295 (3)800

教师说明:

小数的这些运算顺序跟整数是一样的。

教学意图:

本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。

二、小数连乘、乘加、乘减

1.初步尝试。

出示例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0.18千克,每千克可榨油0.45千克,一共可榨油多少千克?

全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程

0.45×0.18×300

=0.081×300

=24.3(千克)

答:一共可榨油24.3千克。

订正答案后,教师提问

(1)算式中有几步计算?每个数目都是小数吗?是什么式题?

(2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)

2.进行类推。

计算下列各题。

(1)72×0.81+10.4 (2)7.06×2.4-5.7

学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。

订正:(1)68.72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11.244(含有乘法与减法两种运算,先算乘法,再计算减法。)

3.教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的运算顺序与整数相同。板书:连乘、乘加、乘减

教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。

三、整数乘法运算定律推广到小数

1.复习。

教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?

教师贴出:a×b=b×a

(a×b)×c=a×(b×c)

(a+b)×c=a×c+b×c

提问学生:乘法交换律中两个数的范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)

2.观察讨论。

教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。

0.7×1.2○1.2×0.7

(0.8×0.5)×0.4○0.8×(0.5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3.6×0.5

让学生观察这三组算式,并讨论以下问题

(1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?

(2)等号两边的算式有什么特点?与我们学过的什么知识一样?

(3)你能得出什么结论?

学生通过讨论将得出如下结论

①三组算式左右两边的结果相等,中间可以用等号连接。

②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。

③整数乘法运算定律在小数中同样适用。

教师提问:我们分别比较这三组算式左右两侧的式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)

3.教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。

板书:整数乘法运算定律推广到小数乘法。

教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。

四、巩固练习

1.填空,并说一说应用了哪个运算定律。(填在书上)

4.2×1.69=□×□

2.5×(0.77×0.4)=(□×□)×□

6.1×3.6+3.9×3.6=(□+□)×□

2.计算下面各题。

(1)19.4×6.1×2.3

(2)3.25×4.76-7.8

(3)18.1×0.92+3.93

(4)5.67×0.21-0.62

(5)7.2×0.18×28.5

(6)0.043×0.24+0.875

教师巡视,注意学生的运算顺序是否存在问题。

3.判断对错。

(1)50.4×1.95-1.9 (2)3.76×0.25+25.8

=50.4×0.05 =0.9776+25.8

= 25.2 =26.7776

全体学生用手势判断,并说出错误原因。

4.应用题。

玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1.30元计算,一共可收入多少元?

学生完成练习后,教师及时订正

2.(1)272.182 (2)7.67 (3)20.582 (4)0.5707 (5)36.936 (6)0.88532

3.(1)运算顺序错误。改正:(2)计算错误。改正

50.4×1.95-1.9 3.76×0.25+25.8

=98.28-1.9 =0.94+25.8

=96.38 =26.74

4.1.30×6×285=2223(元)

教学意图:

本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。

数学教学教案模板篇2

教学内容:

新课程标准实验教科书 人教版五年级上册 第11页例7及后做一做、练习二5-10题。

教学目标

1.知识与技能:

(1)使学生知道小数的运算顺序和整数运算顺序相同。

(2)使学生掌握小数连乘、乘加乘减的计算方法,正确地进行小数连乘、乘加乘减的计算,并能解答有关应用题。

2.过程与方法:让学生通过旧知迁移新知识的方法来学习小数连乘、乘加、乘减的计算。

3.情感、态度与价值观:培养学生认真审题的好习惯。

教学重点

使学生掌握小数连乘、乘加乘减的计算方法,正确地进行小数连乘、乘加乘减的计算。

教学难点

能解答小数连乘、乘加乘减的有关应用题。

教学过程:

一、复习.

1、口算:5×2×7 25×4×8 9×10×6

2、说出运算顺序:12×(5+60) 30+7×85250×4÷200

小结:刚才我们复习了整数四则混合运算的运算顺序,而小数的四则运算顺序跟整数是一样的。

二、新授

1.教学教材第11页例题7.

(1)出示例题7:

(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?

(3)生尝试练习。

抽生板演:0.9×0.9×100

=0.81×100

=81(平方米)

(4)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)

①这个算式是先算的什么,再算的什么?(先算0.9×0.9,再乘100.)

②0.9×0.9是什么意思?(求的是一块砖的面积)

③为什么要用0.9×0.9呢?不可以就用0.9×100吗?(因为占地的是瓷砖的面积,而不是瓷砖的边长。)

④再乘100呢?求的是什么?(100块砖能够铺地的面积。)

⑤同桌之间互相说一说每一步求的是什么?

(5)如果有110块够吗?

①学生独立完成,汇报思路:

第一种:0.9×0.9×110 第二种:0.9×0.9×10+81

=0.81×110=0.81×10+81

=89.1(平方米) =89.1(平方米)

②学生说出第二种算法先算的什么,再算什么,并说出每一步的意思。

(6)小结:小数四则混合运算的顺序与整数四则混合运算的顺序是一样的,今后我们在进行小数四则运算的时候一定要先搞清楚运算顺序再计算。

三、练习

1、完成第11页“做一做”。

生完成在练习本上,抽生板演,并说出运算顺序。

2、课堂作业:第13页练习二5-10题。

3、拓展练习:计算(2.4+3.6)×0.5你能想到哪些方法?

教学后记:

成功之处:利用课件出示例题,激发了学生学习数学的乐趣,通过学生探索不同的解题思路,使学生体会到小数的混合运算也是生活中解决实际问题的重要工具,通过让学生用自己的话表达解答过程,逐步培养了学生具有回顾与分析解决问题过程的意识。

不足之处:教学中只重视了计算顺序,而忽视了计算的准确性,在后面的学习中还要加强计算方面的训练。

数学教学教案模板篇3

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

#formatimgid_0#

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

课堂教学过程设计

一、从学生原有的认知结构提出问题

1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用1厘米表示周长,则i=4a厘米;用s平方厘米表示面积,则s=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

三、讲授新课

1、代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2、举例说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 说出下列代数式的意义:

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3 用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:

①弄清代数式中括号的使用;

②字母与数字做乘积时,习惯上数字要写在字母的前面

四、课堂练习

1、填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

2、说出下列代数式的意义:(投影)

3、用代数式表示:(投影)

(1)x与y的和;

(2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和;

(4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1、本节课学习了哪些内容?

2、用字母表示数的意义是什么?

3、什么叫代数式?

教师在学生回答上述问题的基础上,指出:

①代数式实际上就是算式,字母像数字一样也可以进行运算;

②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3、飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4、a千克大米的售价是6元,1千克大米售多少元?

5、圆的半径是r厘米,它的面积是多少?

6、用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的1/3的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

数学教学教案模板篇4

[教学目标]

1、体会并了解反比例函数的图象的意义

2、能列表、描点、连线法画出反比例函数的图象

3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质

[教学重点和难点]

本节教学的重点是反比例函数的图象及图象的性质

由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点

[教学过程]

1、情境创设

可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?

2、探索活动

探索活动1反比例函数y?

由于反比例函数y?

要分几个层次来探求:

(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);

(2)方法与步骤——利用描点作图;

列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

描点:依据什么(数据、方法)找点?

连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。

探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x

可以引导学生采用多种方式进行自主探索活动:

2的图象的方式与步骤进行自主探索其图象;x

222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.xxx

22探索活动3反比例函数y??与y?的图象有什么共同特征?xx(1)可以用画反比例函数y?

引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?

k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x

数学教学教案模板篇5

教学目标:

1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题.

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律.

教学重点:

使学生准确、熟炼、灵活地运用切线的判定方法及其性质.教学难点:学生对题目不能准确地进行论证.证题中常会出现不知如何入手,不知往哪个方向证的情形.

教学过程:

一、新课引入:

我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题.

二、新课讲解:

实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤.p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线.

分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形.所以辅助线应该是连结oc.只要证od⊥cd即可.亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果.而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等.

∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证.证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴.p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切.

分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点.这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切.题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.

请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的.

练习??

p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切.分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况.这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决.证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切.

分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况.辅助线的方法同第1题,证法类同.只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明.证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?

(答案)可通过“角、角、边”证rt△odb≌rt△oec.

三、新课讲解

:为培养学生阅读教材的习惯让学生阅读109页到110页.从中总结出本课的主要内容:

1.在证题中熟练应用切线的判定方法和切线的性质.

2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握.

(1)公共点已给定.做法是“连结”半径,让半径“垂直”于直线.

(2)公共点未给定.做法是从圆心向直线“作垂线”,证“垂线段等于半径”.

四、布置作业

1.教材p.116中8、9.2.教材p.117中2.

数学教学教案模板篇6

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材p109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1 菱形的四条边都相等;

性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材p109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1 对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:

(1)是一个平行四边形;

(2)两条对角线互相垂直.

通过教材p109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2 四边都相等的四边形是菱形.

五、例习题分析

例1 (教材p109的例3)略

例2(补充)已知:如图 abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.

求证:四边形afce是菱形.

证明:∵ 四边形abcd是平行四边形,

∴ ae∥fc.

∴ ∠1=∠2.

又 ∠aoe=∠cof,ao=co,

∴ △aoe≌△cof.

∴ eo=fo.

∴ 四边形afce是平行四边形.

又 ef⊥ac,

∴ afce是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲) 已知:如图,△abc中, ∠acb=90°,be平分∠abc,cd⊥ab与d,eh⊥ab于h,cd交be于f.

求证:四边形cehf为菱形.

略证:易证cf∥eh,ce=eh,在rt△bce中,∠cbe+∠ceb=90°,在rt△bdf中,∠dbf+∠dfb=90°,因为∠cbe=∠dbf,∠cfe=∠dfb,所以∠ceb=∠cfe,所以ce=cf.

所以,cf=ce=eh,cf∥eh,所以四边形cehf为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是 ;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线 的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,o是矩形abcd的对角线的交点,de∥ac,ce∥bd,de和ce相交于e,求证:四边形oced是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是 ( ).

(a)两条对角线相等 (b)两条对角线互相垂直

(c)两条对角线相等且互相垂直 (d)两条对角线互相垂直平分

2.已知:如图,m是等腰三角形abc底边bc上的中点,dm⊥ab,ef⊥ab,me⊥ac,dg⊥ac.求证:四边形mend是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.