七年级数学有理数教案8篇

时间:2023-05-25 作者:betray

为了可以让自己教学的目的明确都是需要进行教案的写作的,教案在起草的时候,老师需要考虑与时俱进,下面是365文档网小编为您分享的七年级数学有理数教案8篇,感谢您的参阅。

七年级数学有理数教案8篇

七年级数学有理数教案篇1

教学目的:

1、要求学生理解加减混合运算统一为加法运算的意义。

2、能初步掌握有关有理数的加减混合运算。

教学分析:

重点:如何更准确地把加减混合运算统一成加法。

难点:将一个加减混合运算式写成省略加号的和的形式。

教学过程:

一、知识导向:

本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。

二、新课:

1、知识基础:

其一:有理数的加法法则;

其二:有理数的减法法则。

其三:“+”、“-”在不同情形的意义(运算符号及性质符号)

2、知识形成:

(引例)计算:

根据减法法则,按照运算顺序,有:

原式

在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:

这个式子仍看作和式,有两种读法,

按性质符号:读作“负8、正10、负6、负4的和”

按运算意义:读作“负8加上10减去6减去4”

例:把写成省略加号的和的形式,并把它读出来(两种读法)。

例:按运算顺序直接计算:

三、巩固训练:

p46.1、2

四、知识小结:

本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。

五、家庭作业:

p471、23

六、每日预题:

如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?

七年级数学有理数教案篇2

1.熟练地进行有理数加减混合运算,并利用运算律简化运算;

2. 培养学生的运算能力。

加减运算法则和加法运算律。

省略加号与括号的计算。

电脑、投影仪

一、从学生原有认知结构提出问题

说出-6+9-8-7+3两种读法.

二、解决问题

1.计算:(1)-12+11-8+39; (2)+45-9-91+5;

(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;

2.用较简便方法计算:

-16+25+16-15+4-10.

三、应用、拓展

例1.计算:2/38-(3)+(8)

练一练:1.p46第1题(1)-(4)题;p46问题解决

例2.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:

(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;

(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;

(9)(a-c)-(b-d); (10)a-c-b+d.

请同学们观察一下计算结果,可以发现什么规律?

练一练:1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:

(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.

2.分别根据下列条件求代数式·-y-z+w的值:

(1)·=-3,y=-2,z=0,w=5;

(2)·=0.3,y=-0.7,z=1.1,w=-2.1;

七年级数学有理数教案篇3

教材分析:

为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。

教学目标;

[知识与技能]

1.掌握有理数混合运算法则,并能进行有理数的混合运算的计算。

2.经历“二十四”点游戏,培养学生的探究能力

教学重点:有理数混合运算法则。

教学难点:培养探索思维方式。

教学流程:运算法则→混合运算→探索思维。

教学准备:多媒体

教学活动过程设计:

一、生活应用引入:

从学生喜爱的“开心辞典”中王小丫做节目的图片入手引学生进入学习兴趣

[师]我们已学过哪种运算?

[生]乘方、乘、除、加、减五种;复习各种运算的法则;

例计算:

① ②(教师板书)

③ ④(学生计算)

二、混合运算举例。

1.(生口答)下列计算错在哪里?应如何改正?

(1)74-22÷70=70÷70=1

(2)(-112)2-23=114 -6 = -434

(3)23-6÷3×13 =6-6÷1=0

2.计算:(学生上台做,教师讲评)

(1)(-6)2×(23 - 12)-23;(2)56 ÷23 - 13 ×(-6)2+32

解:(1)(-6)2×(23 -12)-23=36×16 -8=6-8=-2。

(2)56 ÷23-13 ×(-6)2+32

=56 ×32-13 ×36+9。

=54-12+9=-74

三、合作学习1

请看实例:

如图:一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。你能用算式表示该花坛的关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?

[生]列出算式3.14×32-1.22

包括:乘方、乘、减三种运算

[师]原式=3.14×9-1.44

=28.26-1.44=26.82(m2)

[师]请同学们说说有理数的混合运算的法则

(生相互补充、师归纳)

一般地,有理数混合运算的法则是:

先算乘方,再算乘除,最后算加减。如有括号,先进行括号里的运算。

四、合作学习2

例2:如图,半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的`高度大约是多少cm(π取3,容器的厚度不计)?

分析:如下图所示

解:水桶内水的体积为π×102×30cm3,倒满2个杯子后,剩下的水的体积为

(π×102×30-2×π×32×6)cm3

(π×102×30-2×π×32×6)÷(50×30)

=(9000-324) ÷1500 = 8676÷1500≈6(cm)

答:容器内水的高度大约为6cm。

三、分组探索(见ppt)

下面请同学来玩“24点”游戏

从一副扑克牌(去掉大、小王)中,任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次)使得运算结果可能为24或—24,其中红色扑克牌代表负数,黑色扑克牌代表正数,j、q、k分别代表11、12、13。

(1)甲同学抽到了,a、8、7、3,他运用下列算式凑成24,=24。

(2)乙同学抽到了,q、q、-3、a,他能凑成24或-24吗?=24。

(3)丙同学抽到了,a、2、2、3,他能凑成24或-24吗?=24。

(4)某同学如抽到下列一组牌6、5、3、a,你帮她设计一下算式使之能凑成24或-24。或-12×3-12×(-1)=-24

(5)老师抽到下列四张牌,1、-2、2、3,你认为能凑成24或-24吗?

(6)老师抽到下列四张牌,9、2、4、10,你认为能凑成24吗?

试一试,你自编两组可凑成24或-24的牌,请邻座同学帮你设计算式。

四、作业:课本第54页,作业题。

教学反思:

对于有理数混合运算,关键要把握好两点,运算次序和符号,不必让学生训练太繁琐、太复杂的计算,而多应该增加探索计算题(编不同的“二十四”点题就很好)。

七年级数学有理数教案篇4

一、 知识与能力

理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法

经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观

通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破

在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备

用电脑制作动画体现有理数的分类过程。

教学过程

四、课堂引入

1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?

2.举例说明现实中具有相反意义的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?

4.举两个例子说明+5与-5的区别。

七年级数学有理数教案篇5

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法

教学难点:给定的数字将被填入它所属的集合中

教学方法:问题导向法

学习方法:自主探究法

一、形势归纳

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

1.有以下数字:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)

二、自学指导

学生自学课本,根据课本寻找自学的机会

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数,

2._______和_________统称为分数

3.____ ______统称为有理数,

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

(3)0不是有理数.

(4)一个有理数不是正数就是负数.

(5)一个有理数不是整数就是分数

3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:1.2.1有理数教学设计

正数集合:{ …}负数集合:{ …}

正整数集合:{ …}负分数集合:{ …}

4.下列说法正确的是( )

a.0是最小的正整数

b.0是最小的有理数

c.0既不是整数也不是分数

d. 0既不是正数也不是负数

5、下列说法正确的有( )

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

七年级数学有理数教案篇6

教学目标

1.进一步掌握有理数的运算法则和运算律;

2.使学生能够熟练地按有理数运算顺序进行混合运算;

3.注意培养学生的运算能力;

教学重点和难点

重点:有理数的混合运算;

难点:准确地掌握有理数的运算顺序和运算中的符号问题;

课堂教学过程设计

一、从学生原有认知结构提出问题;

1.计算(五分钟练习):

(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

(24)3.4×104÷(-5);

2.说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac;

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

1、在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行

审题:(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果;带分数分成整数部分和分数部分时的符号与原带分数的符号相同;

七年级数学有理数教案篇7

学习目标:

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

学习重点、难点:有理数加减法统一成加法运算

教学方法:讲练相结合

教学过程

一、学前准备

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米

记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米.

2、你是怎么算出来的,方法是

二、探究新知

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写

如:(-20)+(+3)-(-5)-(+7) 有加法也有减法

=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法

= -20+3+5-7 再把加号记在脑子里,省略不写

可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.

4、师生完整写出解题过程

三、解决问题

1、解决引例中的问题,再比较前面的方法,你的感觉是

2、例题:计算-4.4-(-4 )-(+2 )+(-2 )+12.4

3、练习:计算 1)(—7)—(+5)+(—4)—(—10)

三、巩固

1、小结:说说这节课的收获

2、p241、2

3、计算

1)27—18+(—7)—32 2)

四、作业

1、p255 2、p26第8题、14题

七年级数学有理数教案篇8

教学目的和要求:

1.使学生了解有理数加法的意义。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

教学重点和难点:

重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

难点:理解有理数加法法则,尤其是异号两数相加的情形。

教学工具和方法:

工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

教学过程:

一、复习引入:

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

2.问题:[

一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

[来源:学#科#网]

二、讲授新课:

1.发现、总结(分类):

我们必须把问题说得明确些,并规定向东为正,向西为负。

(同号两数相加法则)

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,

即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:

(2)若两次都是向西走,则他现在位于原来位置的西方50米处,

写成算式就是: (―20)+(―30)=―50。

(师生共同归纳同号两数相加法则:[来源:z+··+k.com]

同号两数相加,取相同的符号,并把绝对值相加)

(异号两数相加法则)

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:

写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。

后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):

你能发现和与两个加数的符号和绝对值之间有什么关系吗?

(+4)+(―3)=( ); (+3)+(―10)=( );

(―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。

(师生共同归纳异号两数相加法则:

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)

(互为相反数的两数相加为零

问题:会不会出现和为0的情况?

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)= ( )。

师生共同归纳法则3:互为相反数的两数相加得0)

问题:你能有法则来解释法则3吗?

学生回答:可以用异号两数相加的法则)

((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0= ( )。我们不难得出它们的结果。

一般地,一个数同0相加,仍得这个数)

2.概括:

综合以上情形,我们得到有理数的加法法则:

(1) 同号两数相加,取相同的符号,并把绝对值相加;

(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3) 互为相反数的两个数相加得0;

(4)一个数同0相加,仍得这个数.

注意:

一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

3.例题:

例:计算:

(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

解:(1)解原式=―(11―2)=―9;

(2)解原式=+(20+12)=+32=32;

(3)解原式=;

(4)解原式= +(4.3―3.4)=0.9。

4.五分钟测试:

计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

三、课堂小结:

这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.

应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。

(运算的关键:先分类,在按法则运算

运算步骤:先确定符号,再计算绝对值

注意问题:要借助数轴来进一步验证有理数的加法法则)

四、课堂作业:

课本:p18:1,2,3。

板书设计:

教学后记: