七年级数学角教案通用8篇

时间:2023-03-24 作者:couple

教案在完成的过程中,大家务必要考虑与时俱进,作为教师,一定都能理解教案的重要性,365文档网小编今天就为您带来了七年级数学角教案通用8篇,相信一定会对你有所帮助。

七年级数学角教案通用8篇

七年级数学角教案篇1

一、教学目标

1、知识与技能

(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法目标:

(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的

(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;

(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

2、在组长的组织下进行讨论、交流。(约5分钟)

3、小组分任务展示。(约25分钟)

4、达标检测。(约5分钟)

5、总结(约5分钟)

四、小组对学案进行分任务展示

(一)温故知新:

前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么

(二)小组合作交流,探究新知

1、观察下图,回答问题:(五组完成)

大象距原点多远两只小狗分别距原点多远

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。

2、做一做:

(1)求下列各数的绝对值:(四组完成)-1.5,0,-7,2

(2)求下列各组数的绝对值:(一组完成)

(1)4,-4;

(2)0.8,-0.8;

从上面的结果你发现了什么

3、议一议:(八组完成)

(1)|+2|=,1=,|+8.2|=;5

(2)|-3|=,|-0.2|=,|-8|=.

(3)|0|=;

你能从中发现什么规律

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)

若字母a表示一个有理数,你知道a的绝对值等于什么吗

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

5:做一做:(三组完成)

1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1

(2)求出(1)中各数的绝对值,并比较它们的大小

(3)你发现了什么

2、比较下列每组数的大小。

(1)-1和–5;(五组完成)(2)

(3)-8和-3(七组完成)

5和-2.7(六组完成)6五、达标检测:

1:填空:

绝对值是10的数有()

|+15|=()|–4|=()

|0|=()|4|=()

2:判断

(1)、绝对值最小的数是0。()

(2)、一个数的绝对值一定是正数。()

(3)、一个数的绝对值不可能是负数。()

(4)、互为相反数的两个数,它们的绝对值一定相等。()

(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

六、总结:

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

2.绝对值的性质:正数的绝对值是它本身;

负数的绝对值是它的相反数;0的绝对值是0.

因为正数可用a>0表示,负数可用a0,那么|a|=a(2)如果a

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

七、布置作业

p50页,知识技能第1,2题.

七年级数学角教案篇2

一:教材分析

1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

3、教学的重点、难点:

重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索

(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

4、教学目标:

a:知识与技能目标

(1).理解对顶角和邻补角的概念,能在图形中辨认.

(2).掌握对顶角相等的性质和它的推证过程

(3).会用对顶角的性质进行有关的简单推理和计算.

b:过程与方法目标

(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.

c:情感、态度与价值目标

(1).感受图形中和谐美、对称美.

(2).感受合作交流带来的成功感,树立自信心.

(3).感受数学应用的广泛性,使学生更加热爱数学

二、学情分析:

在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

三、教法和学法:

教法:

叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.

学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

四、教学过程:

1课前准备:课件,剪刀,纸片,相交线模型

2教学过程:设置以下六个环节

环节一:情景屋(创设情景,激发学习动机)

请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

环节二:问题苑(合作交流,解释发现)

通过一些问题的设置,激发学生探究的欲望,具体操作:

(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

(3):分析研究此模型:

设置以下一系列问题:a、两直线相交构成的4个角两两相配共能组成几对?(6对)

b、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

c、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

d、你能阐述它们互补和相等的理由吗?

(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

环节三:快乐房(大胆创设,感悟变换)

(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

环节四:实例库(拓展应用,升华提高)

例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力

例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力

(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).

最后安排一个脑筋急转弯:见投影

(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)

环节五:点金帚(学后反思 感悟收获)

通过本堂课的探究

我经历了......

我体会到......

我感受到......

(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)

角的名称

特征

性质

相同点

不同点

对顶角

①两条直线相交而成的角

②有一个公共顶点

③没有公共边

对顶角相等

都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个

邻补角

①两条直线相交面成的角

②有一个公共顶点

③有一条公共边

邻补角互补

环节六:沉思阁(课后延伸 张扬个性)

此为课后作业:

(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)

五、教学设计说明:

设计理念:面向全体学生,实现:

——人人学有价值的数学

——人人都能获得必需的数学

——不同的人在数学上得到不同的发展

过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。

设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。

七年级数学角教案篇3

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、 教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

(2)采用“类比”的学习方法,获取逆定理

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

七年级数学角教案篇4

教材分析

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

学情分析

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

教学目标

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

教学重点和难点

重点: 灵活运用平方差公式进行分解因式。

难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

七年级数学角教案篇5

教材分析:

?解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:

?数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

作业布置、反馈情况。

教学目标:

1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

教学难点:分析实际问题中的相等关系,列出方程。

教学方法:先学后教,当堂训练。

教学准备:多媒体课件等。

预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

教学过程:

一、准备阶段:

1、知识回顾:

(1)、用合并同类项的方法解一元一次方程的步骤是什么?

(2)、解下列方程:

① -3·-2·=10 ②

2、创设问题情境,导入新课。

问题:

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

如何解决这个问题呢?

二、导学阶段:

(一)、出示本节课的学习目标:

1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

(二)、合作交流,探究新知

1、分析解决课前提出的问题。

问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

分析: 设这个班有·名学生.

每人分3本,共分出___本,加上剩余的20本,这批书共____________本.

每人分4本,需要______本,减去缺的25本,这批书共____________本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

这批书的总数是一个定值,表示它的两个式子应相等,

即表示同一个量的两个不同的式子相等.

根据这一相等关系列得方程:

方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

方法过程:

2、总结移项的概念。

像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

3、思考:上面解方程中“移项”起到了什么作用?

4、例题学习

运用移项的方法解下列方程:

三、课堂练习:

运用移项的方法解下列方程:

四、课堂小结:

本节课,我们学习了哪些知识?你还有哪些困惑?

五、达标测试:

运用移项的方法解下列方程:(25′×4=100′)

六、预习作业:

1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

2、课后作业:(1)

七年级数学角教案篇6

教学目标

1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点 数轴的概念和用数轴上的点表示有理数

知识重点

教学过程 (师生活动)设计理念

设置情境

引入课题教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学

点表示数的感性认识。

点表示数的理性认识。

合作交流

探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解

寻找规律

归纳结论问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业

1,必做题:教科书第18页习题1.2第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学角教案篇7

一、教学内容:

人教版教材五年级上册第五单元多边形的面积整理与复习

二、教学目标:

1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱

三、教学重、难点

重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。

四、教学准备

多媒体课件,多边形纸模

五、教学步骤与过程

(一)导入复习

师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)

师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。

板书课题:多边形面积计算复习课

(二)回顾整理,建构网络

1.复习了平行四边形、三角形、梯形面积公式的推导过程。

⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。

⑵根据学生的回答,出示每个公式的推导过程。

六、课堂练习

学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?

七、作业布置

练习十九

七年级数学角教案篇8

?学习目标】

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

?重点难点】能验证一个数是否是一个方程 的解。

?导学指导】

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“adic;”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

1. 一元一次方程的概念

观察下面方程的特点

(1)4 =24;(2)1700+150=2450

(3)0.52`-(1-0.52`)=80

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

2.方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

例 检验2和-3是否为方程 的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=2 方程的解(填是或不是)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=3 方程的解(填是或不是)

?课堂练习】

1.判断下列是不是一元一次方程,是打“adic;”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

2.检验3和-1是否为方程 的解。

3.`=1是下列方程( )的解:

(a) , ( b) ,

(c) ), ( d)

4 、已知方程 是关于`的一元一次方程,则a= 。

?要点归纳】:

1. 这节课我们学习了什么内容?

2.什么是方程的解?如何检验一个数是否是方程的解?

?拓展训练】:

1.检验2和 是否为方程 的解。

2.老师要求把一篇有20__字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)