八年级下册教案参考7篇

时间:2023-02-27 作者:loser

课堂效率的提升离不开有效教案的制定,教师们在写教案的过程中,一定要保证自己的头脑是清楚的,365文档网小编今天就为您带来了八年级下册教案参考7篇,相信一定会对你有所帮助。

八年级下册教案参考7篇

八年级下册教案篇1

教学内容:

九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

教学目标:

1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

3、引导学生探索和解决问题,体验转化及极限的思想方法。

教学重点:圆柱体体积的计算.

教学难点:理解圆柱体体积公式的推导过程.

教具:多媒体课件、圆柱形容器、水、橡皮泥。

教学过程:

一、激凝导入

师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

(2)生回答。

2、出示橡皮泥捏成的圆柱体。

那你有办法求出这个圆柱体橡皮泥的体积吗?

生(热情的):老师将它捏成长方体或正方体就可以了!

3、创设问题情境。

师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

那怎么办?

学生试说出自己的办法。

师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验、探究新知

1、推导圆柱的体积公式。

师:你们打算怎么去研究圆柱的体积?

小组同学讨论研究的方法。

2、学生动手操作感知

(1)学生以小组为单位操作体验。(操作学具,进行拼组)。

(2)学生小组汇报交流:

近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。

(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

3、教师课件演示圆柱转化成长方体的过程。

4、师生共同推导出圆柱的体积公式:

长方体的体积=底面积高

圆柱的体积=底圆柱面积高

v = sh

5、巩固公式

①v、s、h各表示什么?

②知道哪些条件就可以求圆柱的体积?

а、知道底面积和高可以直接用公式计算圆柱的体积;

b、知道底面半径和高,可以先计算出底面积,再计算体积;

c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

学生回答后师板书。

6、教学例4、例5。

课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

三、实践练习

1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

同学们,你们知道小林是怎样想的吗?

四、课堂总结;

通过本节课的学习,你有什么收获?

八年级下册教案篇2

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

八年级下册教案篇3

●教学目标

知识目标

1.使学生了解北京的位置、面积等及自然环境特征,并能对北京的位置做出简要评价;

2.使学生了解北京的历史文化传统,掌握北京的城市职能和未来发展方向。

能力目标

1.培养学生的读图能力和分析、整理资料的能力;

2.使学生掌握了解一座城市的基本方法和思路。

德育目标

通过本节学习,加深学生对祖国悠久历史、深刻文化底蕴的认识,进一步培养学生的爱国之情。

●教学重点

1.北京市的自然地理特征、历史文化传统和城市职能;

2.北京市的未来发展方向。

●教学难点

1.北京市地理位置的评价;

2.北京市城市建设中存在问题及解决措施。

●教学方法

讨论法、启发式讲述法。

●教具准备

多媒体展示台、景观图片等。

●课时安排

二课时

第一课时

●教学过程

[导入新课]

在上册书中我们学过了我国的行政区划,请大家回忆我国共划分几级行政区划?最高级别的有多少个?分哪几类?

提问,学生回答。(略)

讲述:我国幅员辽阔,面积广大,为了经济发展和管理方便,共划分了三级行政区划,其中最高级别的共34个。分别为直辖市4个,省23个,自治区5个,特别行政区2个。那么,大家知道在这34个省级行政区中,政治地位最重要的是哪个吗?

学生齐答:北京

对,北京。北京简称京,是我们中华人民共和国的首都。大家对北京了解多少?有谁去过北京?请举手。好,我们请××同学给大家介绍他所了解的北京。

学生介绍。(略)

通过刚才几位同学的介绍,我们大家对北京有了一些印象,但还不全面、不系统。今天我们就来深入了解、认识我国的政治文化中心——北京。

板书:第六章认识省级区域

第一节全国政治文化中心——北京

[讲授新课]

北京之所以成为全国的政治文化中心,与它的位置、范围、地理环境等密不可分。

学生活动:请大家阅读图6.1“北京市略图”和图6.3“北京城区的地理位置”,以及相关文字内容。

分析、讨论、回答以下问题:(在屏幕上打出)

1.北京市的地理坐标;

2.北京市在什么部位与哪几个省区相邻?

3.北京市的地理位置有什么优越性?

4.北京市及其周围的地形地势有什么特点?

5.北京市属哪种气候类型?有什么特点?

6.流经北京市的河流有哪几条?

7.北京市的对外交通有什么特点?

学生讨论:(以四人小组为单位)教师巡回参与指导。(根据时间要求,可安排1、2组讨论1、2题,3、4组讨论3、4题等)

提问,小组代表回答,组员补充。(略)

板书:一、北京概况

位置、面积、人口

归纳讲述:北京市位于华北平原北部,东部距渤海150km;东南临天津市,其余三面被河北省包围。北京市的地理坐标为40°n,116°e。

北京市面积1.68万km2,现有人口1382万人(20xx年)。

板书:二、北京的自然地理特征

1.地形(板书)

指图(显示北京市地形图)讲述:北京的地势西北部和东北部三面环山(板书),地势较高。西部的山地总称西山,是太行山的余脉,由几条东北—西南走向的褶皱山岭组成。门头沟西部的灵山海拔2303米,是北京的最高峰。北部山地属燕山山脉,统称军都山。闻名世界的万里长城沿着燕山山脉蜿蜒起伏,雄伟壮丽。越山地,北与内蒙古高原相连,西与黄土高原衔接。在重叠的群山之中,由于河流侵蚀,形成了不少隘口,自古以来就是人们南来北往的必经之地。

北京的东南是华北平原(板书)的一部分。由于靠近燕山和太行山,平原大部分为山麓冲积扇。北京城就位于永定河的脊部。平原东南地势低洼,属于冲积平原,整个平原自西北向东南平缓倾斜。

板书:2.北京的气候

(显示北京市气温曲线和降水柱状图)

讲述:北京属典型的温带大陆性季风气候。冬季寒冷干燥(板书)夏季高温多雨(板书),春秋短,冬夏长,年平均降水量609mm。

北京的春季气温回升迅速,多风;夏季当东南季风来临时,形成7~8月间的高温多雨天气。夏季降水占全年的70%,对农业生产极为有利;秋季云淡、天高、气爽,为北京最舒适的季节;而冬季则盛行西北风,经常出现大风、降温、寒冷、干燥天气。

板书:3.北京的河流

讲述:北京市的河流属海河水系(板书)。永定河、温榆河和潮白河是全市三条大河,分别自西北和东北向东南流入天津,汇入海河,最终流入渤海。

注:以上各部分内容的讲述顺序可在学生回答了相应问题之后,内容的详略程度视学生接受程度和时间而定。

在了解了北京的自然环境以后后,我们来看作为一国之都的北京的交通。

板书:三、北京的对外交通

八年级下册教案篇4

教学目标:

1.使同学通过观察.交汉等活动,探索并掌握长方形和正方形的周长计算方法。

2.使同学通过观察.丈量和计算等活动,在获得直观经验的同时发展空间观念。

3.使同学在学习活动中体会实际生活中的数学,发展对数学的兴趣,培养交往.合作的探究的意识与能力。

设计理念

一、创设生动情境,激发同学探索的动机。

在这节课中,通过创设两只猫比散步路线的长短这样一个实例,设置悬念,让同学在生动有趣的数学情境中开始学习,并且让这个情景贯穿整节课,充沛调动了同学学习的积极性和主动性。

二、巧设数学活动,激励同学主动探究。

在这节课的设计中,我为同学的探究设计了一系列丰富多彩的活动,让同学通过操作.交流等丰富多样的学习方式,提高学习效率,培养同学的创新意识。比方:先说怎样可以知道长方形和正方形的周长,让同学借助与自身的生活经验,初步得同长方形周长计算有哪些战略;通过猜一猜图形的周长初步感知计算方法,培养了数学直觉;用自身的方法算一算图形的周长,让同学感悟解决问题的战略多样化;说说自身比较喜欢哪种计算方法,等等。

三、和时反馈反思,渗透学习战略。

在本课的教学中,对学习过程的和时反馈,对解决问题结束的和时反思,使同学能够正确认识自身的认知过程。比方,通过反馈周长的计算方法,暗示性地让同学注意战略的优化;用试一试的方法教学正方形的周长,让同学感受到知识间的内在联系。全课小结时,通过交流收获与体会,使同学感受到胜利的喜悦。

八年级下册教案篇5

教学内容

人教二年级下册教材第59~60页例1及第60页“做一做”。

内容简析

例1 借助平均分物的操作活动,先进行恰好分完的操作活动,并用除法算式表示出来;再进行有剩余的操作活动,通过对比使学生体会其异同,帮助学生理解有剩余的情况,并用除法算式表示。通过与表内除法的对比,使学生理解余数及有余数的除法的含义。

教学目标

1、结合具体情境,经历认识余数的过程,理解有余数除法的意义。

2、通过主题图教学,让学生知道计算问题是从生活实际中产生,体会到生活中处处有数学。

3、培养学生的学习兴趣及初步的观察、概括能力。

教学重难点

理解余数及有余数除法的含义,能够准确求出余数。

教法与学法

1、本课时运用自主学习法,引导学生通过摆草莓的操作活动,使学生经历把物品平均分后有剩余的现象,抽象为有余数的除法的过程,理解有余数除法的含义。

2、本课时学生的学习主要是通过总结、归纳、抽象、概括等方法来学习。承前启后链

教学过程

一、情景创设,导入课题

故事描写法:周末小熊打算请2个好朋友到他家做客,加上小熊一共3人,他想请大家一起吃草莓。可是他打开冰箱一看,发现只有7个草莓,3人怎么分7个草莓呢?他很苦恼。聪明的小朋友们,你们知道他为什么苦恼吗?谁能来说一说?(不能把草莓平均分完)这就是我们今天要共同探究的内容——有余数的除法(板书)。【品析:把教材中的情景进行了改编,增加了课堂的趣味,吸引了学生的注意力,为新知教学做了充分的准备。】 活动导入法:请同学们拿出10个小圆片。

①把10个圆片平均分成2份,每份有几个?

②把10个圆片平均分成3份,每份有几个?

(学生说法不一:有的说不能分,有的说分不出来)

这样的问题究竟应该怎样解决呢?这就是今天我们要学习的新内容,有余数的除法。(板书课题:有余数的除法)【品析:活动导入,让学生动手操作,每个学生都参与其中并思考没有刚好分完怎么办?于是激发了学生强烈的求知欲望,随着老师的引导进入新知的学习中。】二、师生合作,探究新知

1、复习表内除法的意义。

平常我们分东西,有时候能正好平均分完,有时候不能正好分完,剩下的又不够再分。剩下不够再分的数就叫余数,这节课我们就一起来学习“有余数的除法”(出示课题)。

(1)课件出示6个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

(2)学生交流获取信息。

(3)利用学具实际操作。

(4)用算式表示操作的过程。课件出示6个草莓摆放的结果图:

(5)小组内说说6÷2=3(盘),这个算式表示的意思。【品析:沟通操作过程、算式、语言表达之间的转换,使学生明白它们的意思是一样的,只是表达的形式不同。】2、理解有余数除法的含义。

(1)在动手操作中感受平均分时会出现有剩余的情况。

①课件出示7个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

②学生利用学具操作。

③交流发现的问题:剩下一个草莓。

(2)在交流中确定表示平均分时有剩余的方法。

①学生用算式表示刚才摆的过程,教师巡视,选取典型案例。

②教师板书规范写法:

7÷2=3(盘)……1(个)

余数

③读作:7除以2等于3余1。写法:首先在等号的右面写商,然后点上6个小圆点再写上余数。

④交流算式表示的意思,7、3、2、1各表示什么?明确“1”是剩下的草莓数,我们把它叫余数。

(3)归纳总结,完善学生的认知结构。

①比较两次分草莓的相同点和不同点。②教师随学生的回答,用课件呈现下表。

分的物品 几个一份 分的结果 算式表达

6个草莓 每2个一盘 分了3盘,正好分完 6÷2=3(盘)

7个草莓 每2个一盘 分了3盘,还剩1个 7÷2=3(盘)……1(个)

?品析:充分调动学生已有的经验,通过摆学具的直观方式让学生在与表内除法的对比中,理解余数及有余数除法的含义,给学生创设自主构建知识的空间。】

三、反馈质疑,学有所得

在学习完例1的基础上,引领学生及时消化吸收,请学生同桌之间互相叙述余数和有余数除法的含义。然后教师提出质疑问题,引领学生在解决问题的过程中,学会系统整理。

质疑一:什么是余数?余数的单位名称是什么?

学生讨论后归纳:当平均分一些物品有剩余且不够再分的时候,剩余的数叫余数。余数的单位名称和被除数的单位名称相同。

质疑二:什么是有余数的除法?

学生讨论后总结:带有余数的除法就是有余数的除法。

四、课末小结,融会贯通

本节课中,你有什么收获?聪明的你能帮老师简单总结一下刚刚我们都学习了哪些内容吗?

“本节课中,我们明白了平均分后有剩余可以用有余数的除法算式表示。也知道余数的单位名称和被除数的单位名称一样。”

五、教海拾遗,反思提升

本节课,我使用故事导入,通过小熊分草莓招待客人,草莓有剩余的情况,唤醒学生的生活经验,

让他们初步感受到余数就在自己的身边,体会余数的意义。

打破原有教学模式,组织学生开展自主、合作、探究的学习活动。老师和学生是平等的对话关系,真正把主体地位还给学生。当出示问题时,先让学生自己独立尝试分一分,在小组内交流自己是怎样做的,怎样想的,这样给学生充分的思考空间,让每个学生都能在趣味中学习,享受到成功的喜悦。

我的反思:

板书设计

有余数的除法(1)

7÷2=3(盘)……1(个)

余数

第2课时 有余数的除法(2)

教学内容

人教二年级下册教材第61页例2及“做一做”。

内容简析

例2 借助用小棒摆正方形的操作,使学生巩固有余数除法的含义,理解余数要比除数小的道理。

教学目标

1、使学生初步理解余数要比除数小的道理。

2、学生在获取知识的过程中,渗透借助直观研究问题的意识和方法,积累观察、操作、讨论、合作交流、抽象和概括等数学活动经验,发展抽象思维。

3、学生在自主探究解决问题的过程中,感受数学与生活的联系,体验成功的喜悦。

教学重难点

探索并发现余数和除数的关系,理解余数要比除数小的道理。

教法与学法

1、本课时主要是运用计算和对比的教学方法,探索并发现余数和除数的关系,理解余数要比除数小的道理。

2、本课时学生的学习主要是通过总结、归纳、抽象、概括等方法来理解余数要比除数小的道理。

承前启后链

教学过程

一、情景创设,导入课题

操作实践法:如果摆1个正方形要用4根小棒,那么8根小棒可以摆几个正方形呢?怎样列式?8÷4=2(个)。

学生动手实践,得到8根小棒可以摆2个正方形。

如果是9根、10根、11根、12根小棒又会出现什么情况?接下来,咱们就用手中的小棒摆一摆,看看能摆几个这样的正方形。一人摆小棒,一人把摆的结果及所列的算式写在下面的记录单上。

小棒根数 摆的结果 算式

8根 8÷4=2(个)

9根 9÷4=2(个)……1(根)

?品析:在实践操作中,学生情趣盎然,积极参与,并把操作结果一一记录,为下一步观察、比较、分析做了充分的准备工作。】

故事描述法:孙悟空开了一家眼镜店,给人做镜框,他做一个正方形的镜框用4根铝合金条。8根铝合金条可以做两个镜框;9根铝合金条可以做两个镜框,余下1根;10根铝合金条可以做两个镜框,余下2根;11根铝合金条可以做两个镜框,余下3根……真有趣,孙悟空的眼镜店里所包含的数学知识就是我们学习的有余数的除法。我们今天就跟孙悟空一起探究这些有余数的除法里有趣的数学问题——余数与除数的关系。

?品析:把用小棒摆正方形编写成孙悟空做镜框的童话故事,大大增加了课堂情趣,吸引了学生的注意力。】

二、师生合作,探究新知

1、合作探究。

(1)教师操作:在实物投影仪上用4根小棒摆出一个正方形。

(2)学生思考:用8根小棒可以摆出几个正方形?你能列出除法算式吗?

(3)小组合作:用9根、10根、11根、12根小棒摆出独立的正方形,看看能摆出几个,还剩多少根?(每组准备的小棒根数不同,共分成以下5种情况)

(4)根据摆出的小棒图,列出除法算式。

2、交流反馈。

教师组织全班交流,根据学生的回答,将结果展示在黑板上。

3、观察对比,发现余数与除数的关系。

(1)现在,老师要请小朋友们仔细观察这些除法算式,你发现了什么?

(2)组织学生讨论:

①你们发现余数有什么规律?

②质疑:为什么余数总是1、2、3而不是其他的数?

③猜想并验证:余数可能是4或5吗?为什么?

④余数和谁有关系?是怎样的关系?

(3)教师小结并板书:

余数既不能比4大,也不能和4相等,也就是余数必须比除数小。

余数

八年级下册教案篇6

一、总体说明

数学是为生活服务的。本单元解决问题,就是要培养学生运用数学知识解决问题的能力。主要内容包括用乘法计算解决问题和运用除法计算解决问题。是在学生已经掌握了运用乘法和除法一步解决问题的基础上,进一步学习和掌握需要两、三步计算解决问题。教材通过实际生活联系非常紧密、贴近度很高的生动例子,让学生先从直观的图画中了解信息,再运用了解的信息来解决问题,既培养了学生了解分析信息的能力,也提高了学生解决问题的能力。

二、教学目标

(1)使学生掌握运用乘法计算或除法计算来解决问题的思路和方法,

(2)培养学生了解信息和分析信息的能力,提高解决问题的能力

(3)通过生动的实例,让学生体验解决问题的成功感,培养学习数学的兴趣。

(4)结合适当的教材内容对学生进行思想道德教育。

三、教学设想

学习数学的目的就是要能运用数学来解决日常生活中的实际问题在本单元的教学中,先让学生自己观察图画,了解和收集图画中的信息,再运用所学的知识,根据信息在小组中讨论、合作交流,解决问题,然后让学生解决问题后总结和归纳生活中一般性的规律,提高解决问题的能力。

本单元建议用5课时安排教学。数学广角(单元教案)

一、总体说明

本单元的知识内容是通过解决生活中的实际问题,扩展学生的思维,开发学生的智力。主要内容包括:统计中的重复问题和等式中实物代换问题两种类型。是在学生学习了统计和等式的基础上,进一步理解统计中出现的重复现象和等式中通过实物进行代换问题。通过运用集合的思想和等量代换思想解决实际问题。体现了数学与生活的联系。

二、教学目标

(1)理解统计中出现的重复现象,运用集合图推算事物的数量。

(2)通过实物代换,初步理解代换思想,推算事物的数量。

(3)扩展学生的思维,开发学生的智力。

三、教学设想

根据奉单元知识内容相对比较抽象和学生的思维能力水平的特点。在教学中主要采用实物分析的方法进行教学.先让学生能通过实物理解重复现象和代换思想,再通过适当的练习加强学生的思维训练。使学生能充分理解,并能解决一些实际问题。

本单元建议用2课时安排教学。

集合的思想

教学内容

课标实验教材三年级下册第108页例1,练习二十四第1、2题。

教学目标

1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

2、使学生能借助具体内容,体会集合的.思想方法,利用集合的思想方法解决问题。

3、培养学生观察思考问题的能力。

教学重、难点

重点:初步体会集合的思想方法。

难点:用集合直观图来表示事物。

教学准备

cai

教学过程

一、借助熟悉题材,渗透集合思想

1、巧妙设疑,直观感悟

(1)谈话:老师知道同学们有很多的兴趣爱好,有的喜欢音乐,有的喜欢美术,有的两样都喜欢,老师想进一步了解你们,请允许我对其中的一个小组进行调查,好吗?

(2)(指定小组)分别在“音乐”和“美术”下面签上名字,两者都喜欢,两边都签。

(3)全班一起统计喜欢音乐和喜欢美术的人数。

(4)(故作惊讶):咦,这个小组没有这么多人呀?问题出在哪儿呢?

(5)四人小组讨论发现:统计过程中有学生既喜欢音乐又喜欢美术,是重复的,在计算总人数时只能计算一次。

2、图示方法,加深理解

(1)(出示)先是两个小组的集合圈,再把两个圈进行合并。

(2)让学生说一说图中不同位置所表示的不同意义。

(3)让学生列式求出喜欢音乐和喜欢美术的共有多少人。

(4)全班交流,说说想法。

(5)师根据课堂实际情况适当小结。

3、运用集合思想解决问题

(1)情境出示课本p110第1 题。

(2)学生独立思考并解决。

(3)同桌交流,重点说说想法。

(4)反馈。(昨天和今天进货的重复部份用重点号显示)

二、灵活运用数学思想方法解决问题

1、谈话:小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?

(适当给学生介绍“两栖动物”的常识,扩展学生知识面。)

2、练习二十四第2题

要求:(1)学生独立思考并解决。

(2)班内交流方法。

三、全课总结。

1、谈谈这节课的收获。

2、小调查:生活中哪些地方要用到今天所学知识来解决。等量代换

教学内容

教材第109例2及做一做,练习二十四第3、4、5题。

教学目标

1、让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的数学思想。

2、培养学生有序地、全面地思考问题的意识和合作学习的习惯。

教学重、难点

重点: 利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想,为以后学习简单的代数知识做准备。

难点:初步体会等量代换的数学思想解决一些简单的实际问题或数学问题。

教学准备

卡片学具、。

教学过程

一、情景引入。

师:看,今天水果园里正在进行“体重”大比拼呢?(播放)我们先来看看西瓜姐姐多重?(4千克)你是怎么知道的?

师说明:当天平平衡时,左右两边的物体一样重,所以西瓜姐姐重4千克。

师:接下来进场的是苹果妹妹,我们假设每个苹果同样重。(继续播放)看!天平又平衡了,这又说明什么?(引导学生说出:4个苹果重1千克。)

师:看到这样的情景,你想提什么数学问题?

让学生自由提出问题,师生共同解答。

二、教学新知。

(一)引导学生发现问题,合作探究解决方案。

师:这个问题提得真棒,几个苹果与1个西瓜同样重呢?(10个、12个、15个、16个……)

师:小朋友不要急着猜,好好动动脑筋。或者在小组内摆摆学具,通过合作解决这个问题。

(留给学生充足的独立思考、小组合作及操作学具的时间,老师巡视,给予学生适当的启发与指导。)

小组汇报:这时大部分的学生喊出:16个。

师:你们是怎么知道的?怎么想的?

生1:因为:一个西瓜4千克(等于4个砝码), 1千克(1个砝码)等于4个苹果,我们用替换的方法,把一个1千克(1个砝码)换成4个苹果。西瓜重4千克(4个砝码),总共要换4次,因此是16个。

(师依学生的回答,一边摆学具,利用直观的方式帮助学生理解。)

生2:我们组认为:如果第二个图中天平的右边变成原来的4倍,左边也要变成原来的4倍,就是16个苹果,天平才能保持平衡。

生3:一个西瓜和4千克砝码同样重,而4个苹果和1千克砝码同样重,所以4千克砝码就有4个4, 4×4=16(个)。

生4:……

(二)进一步体会等量代换方法。

师:小朋友说得都对,(展示:1个西瓜等于16个苹果。)这时又来了波萝哥哥,1个波萝的“体重”等于2个苹果。一个西瓜与几个波萝一样重呢?()为什么呢?

让学生独立思考,同桌交流,汇报结果。

生1:32个。

(可能有些学生会出现这样的错误,老师要及时给予分析引导,再通过生生评析,帮助其改正。)

生2:8个。因为,2个苹果可以换1个波萝,1个西瓜等于16个苹果,就可以换8个的波萝。

生3: 2个苹果换一个波萝,16个苹果里面有8个2,16÷2=8(个),所以1个西瓜和8个波萝一样重。

生4:把2个苹果变成原来的8倍就是16个,等于1个西瓜的重量。把1个波萝也变成原来的8倍就是8个,这样天平也平衡,所以是8个。

师:(略小结。)

(三)应用新知,解决问题。

完成p109“做一做”

学生独立完成,老师巡视,个别辅导。讲评时,让学生说说是怎么思考的,最后师生共同梳理解题思路:要求2头牛和多少头羊同样重,首先要知道2头牛和多少头猪同样重,再利用猪和羊的关系进行替换(计算),最后求出结果。

三、巩固练习。

1、完成练习二十四第3题。

引导学生读题、分析关系,并尝试抽象地推导(计算)一下。如果学生抽象地想象有困难,可以让学生先用学具摆一摆。

2、完成练习二十四第4题。

提示:直接比较1只鸡和1只鸭谁重一些比较困难,可以转化为2只鸡和2只鸭,或4只鸡和4只鸭的比较。

3、完成练习二十四第5题。

第1小题,把第一个等式中的△用□+□+□替代,就变成了□+□+□+□=240,所以□=60,而△=□+□+□,所以等于180。

第2小题,

让学生在独立思考的基础上交流讨论,寻找方法。

建议:直接用等量代换的方法来解决比较困难,可以先把三个等式的左边相加,右边相加,可得到2×(○+△+□)=200,所以○+△+□=100,然后再利用等量代换,依次求出○、△、□的值。

四、全课总结

师:通过这节课的学习你们知道什么是等量代换吗?

八年级下册教案篇7

1.课件出示(教师讲述):在这春暖花开的季节,昆虫们欢快地飞舞,瞧,它们正向我们飞来,可是我们只能看见它们的半个身影,你能猜出它们分别是什么昆虫吗?

2.学生猜想,课件呈现完整的昆虫。

3.教师质疑:你是怎么想出来的?

(二)交流引入

1.观察交流:这些昆虫有什么相同的地方?

2.这些昆虫上下或左右两边都是完全相同的,我们就说它们是对称的。(板书:对称)

【设计意图:从大自然中的昆虫引出对称图形的一半,让学生在猜想中调动已有的生活经验和知识储备,初步感受对称现象,丰富想象力,激发学生的学习兴趣。】

二、动手操作,探究新知

(一)剪一剪,初步感知轴对称现象。

1.初剪对称图形,思考探索。

学生动手剪一只“蝴蝶”,教师巡视指导。

2.汇报展示,优化剪法。

为什么有的小朋友剪出的蝴蝶非常逼真,有的小朋友剪出的蝴蝶却不像呢?为什么要对折?为什么只要画“蝴蝶”的一半?

3.再剪对称图形,感受对称。

先对折,再画一画、剪一剪,用这种方法再剪一个其它的`对称图形。

(二)赏一赏,认识轴对称图形。

1.互相欣赏作品,感受对称美。

2.回顾剪法:这些美丽的图形你是怎么剪出来的?

3.揭示特点,完善课题。

像这样,对折后两边完全重合的图形(板书:两边完全重合),就称为轴对称图形。(板书:轴对称图形)对折时留下的折痕就是它们的对称轴。(板书:对称轴)

4.巩固认识:指出你剪的轴对称图形的对称轴。

(三)折一折,进一步认识轴对称图形。

1.折一折长方形、正方形、圆形纸片,你有什么发现?

2.平行四边形是轴对称图形吗?为什么?(理解“完全重合”的意思。)

(四)辨一辨,辨别轴对称图形。

1.下面这些图形中哪些是轴对称图形。(根据教材第29页的“做一做”改编)

2.学生独立辨别,有困难的可以先折一折再判断。

(五)找一找,感受生活中的对称现象。

其实,我们的身边也有很多轴对称现象,请大家睁大眼睛到我们生活中去找一找。

【设计意图:学生通过“剪一剪、赏一赏、折一折、辨一辨、找一找”等学习活动,在动手操作和合作交流中直观认识轴对称现象,知道对称轴,会用“对折”的方法辨认轴对称图形,同时感悟生活中五彩缤纷的对称现象,初步感知镜面对称现象,感受图形的对称美。】

三、巩固练习,深化理解

(一)基本练习

1.教材第33页练习七第1题

2.教材第33页练习七的第2题。

(二)变式练习

1.教材第33页练习七的第3题

(三)拓展练习(教材第35页练习七的第11题)

1.将一张正方形纸如下图所示,先对折两次,再剪去一个角,展开后是什么图形?

2.想一想,再剪一剪。

3.展示不同剪法展开后得到的不同图案。

【设计意图:通过层层递进的练习,让学生在观察、判断等数学活动中,进一步巩固对轴对称图形的直观认识及辨别方法,增强学生的观察能力、想象能力和表达能力,发展初步的空间观念。】

四、课堂小结,拓展延伸

(一)这节课你有收获吗?说一说。

(二)走进生活,欣赏生活中的对称现象。(课件配乐展示)

设计意图:通过归纳总结、谈收获让学生享受学习成功的快乐的同时,伴着优美的音乐,走进生活中的对称世界,不仅感受数学与生活的密切联系,更领略到那无处不在的对称美。