教案是教师为了提供高质量课堂教学而必须准备的一种文体,教案的编写可以帮助我们更好地掌握教学进度和教学目标,以下是365文档网小编精心为您推荐的人教版六年级数学比教案推荐8篇,供大家参考。
人教版六年级数学比教案篇1
学情分析
了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
学习目标
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
导学策略
练习、反思、总结。
教学准备
小黑板
教师活动
学生活动
一、基本训练:
男女职工人数比是5∶4根据这句话你想到了什么?
二、按比例分配练习:
(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?
(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?
(三)一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?
(四)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5.这个三角形三条边各是多少厘米?
1.还是按比例分配问题吗?
2.如果是四个数的连比你还会解答吗?
三、判断
一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
7+3=1020=14(厘米)20=6(厘米)【错,要分的不是20厘米】
四、思考:平均分是不是按比例分配的应用题?按照几比几分配的
五、课堂练习:《伴你成长》
人教版六年级数学比教案篇2
?教学目标】
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
?教学重点】
负数的意义和负数的读法与写法。
?教学难点】
理解0既不是正数,也不是负数。
?教学过程】
一、激发兴趣,导入新课
游戏:《我变,我变,我变变变》
老师说一句话,请同学们说出一句和它意思相反的话。
二、创设情境、学习新知
1.教学例1。
(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。
你能用自己的方法来表示这两个温度吗?
学生思考后反馈,教师适时点拨、评价和引导。
教师小结:
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第123页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。
(2)巩固练习:课本第124页试一试。
教师巡视,集体订正。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
学生交流、讨论。
指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写,负号可以不写吗? 为什么?
三、巩固练习,深化认识
1.课堂活动:1、2题。
①读一读,议一议。
学生齐读,巩固负数的读法。
②根据题中的信息,说一说三个班的答题情况。
学生讨论交流,并说出理由。
2.练习二十五:1、3题。
独立练习,反馈交流。
四、联系生活,拓展运用
说一说:生活中哪些地方还会用到负数。
人教版六年级数学比教案篇3
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:
圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的'周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
教学具准备:
多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。
教学过程:
一、创设情境,提出问题
1、创设情境。
这节课,老师要和同学一起探讨一个有趣的数学问题。
媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。
2、迁移类推。
引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。
(1)要求唐老鸭所跑的路程实际就是求什么?
(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)
(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)
3、提出问题。
看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。
梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?
[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]
二、自主参与,探究新知。
1、实际感知圆的周长。
让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。
2、明确圆周长的意义。
引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)
(1)圆的周长是一条什么线?
(2)这条曲线的长就是什么的长?
(3)什么叫做圆的周长?
学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)
[设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]
人教版六年级数学比教案篇4
教学内容:
教科书p23-26的内容,p24做一做,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:
掌握圆锥的特征。
教学难点:
正确理解圆锥的组成。
教具准备:
每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识(直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高、
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页做一做的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径、教师行间巡视,对有困难的'学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3、完成练习四的第2题。
补充习题
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:
观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
人教版六年级数学比教案篇5
教学内容:人教版六年级数学下册p16《生活与百分数》
教材分析:教材紧接着百分数(二)这一单元,安排“生活与百分数”这一“综合与实践”活动,目的是让学生进一步了解百分数在生活中的运用,提高数学应用意识和实践能力。
学情分析:学生已经掌握了求利息的方法,通过这一实践活动更加提高了他们对百分数知识的应用能力,从而感受到百分数在生活中的价值。
教学目标:
1、初步感知利率的调整与国家经济发展之间的关系。
2、结合具体情境,经历综合运用所学知识解决理财问题的过程。学会设计合理的存款方案,能对自己设计的方案做出合理的解释。
3、从小培养理财意识,感受理财的重要性,培养科学、合理理财的观念。
教学重点和难点:学会设计合理的存款方案,能对自己设计的方案做出合理的解释。
教具准备:学生搜集的银行利率信息及网上查找的资料,多媒体课件
教学过程:
一、谈话引入
课前,我给大家提前布置了调查任务,同学们以小组为单位,对学校和家庭周边的银行进行了走访调查,记录了一些银行近期的利率,那么,同学们通过这项活动是否已经感受到了百分数在生活中的价值了呢?但是不一样的理财方式,带来的收益是不同的,那么怎样理财才能给我们带来尽可能多的回报呢?那就让我们一起来进入今天的活动吧!
二、探索新知
活动1 --初步感知利率的调整与国家经济发展之间的关系
老师把同学们抄来的存款利率进行了整理,(出示最新存款利率一览表)对比一下,它与教材第11页的利率表有什么不同?
你了解到的国家调整利率的原因是什么呢?
学生发表自己的想法:
教师小结:
一、大幅降息有助于降低企业财务成本,保障国民经济的稳健发展
二、大幅度降息对房地产业是个直接的利好,将大大降低房地产业的贷款费用,同时也给有需求的贷款买房者减少了购房成本,促进购房消费。
三、大幅度降息对金融证券市场将产生活跃作用。
四、大幅度降息对消费有刺激作用。
活动2--利用普通储蓄存款设计合理的存款方案
我们从宏观上了解了利率也是根据实际需求在不断调整的,那具体到我们个人的实际需求,则是选取怎样的理财方式才能使我们的存款到期后收益最大。
现在请大家根据咱们调查到的存款利率帮李阿姨算一算,如果她准备给儿子存2万元,供他六年后上大学,怎样存获得的收益最大?
首先我们要考虑什么问题?
预设:
1.去哪家银行存?选择银行,说明理由。
2.怎样安排存期?(6个一年期;3个两年期;2个三年期;1个五年期和1个一年期)
明确:存期为六年,必定需要取出后再次存入,要想使6年后的收益最大,咱们是把每次的利息取出只存本金合算还是连本带息一起存入合算呢?
可以小组合作,用计算器计算。
学生进行小组合作,教师巡视了解情况。
交流汇报:通过计算学生认识到一次性存入的方法比分成很多次存入所获得的利息多。而一年期利息少,所以五年期配一年期的存款方式也不合算。最终发现存六年还是存2个三年期最合算。
活动3--利用教育储蓄和国债设计合理存款方案
另外两种类型的理财方式:教育储蓄存款和购买国债。
因为教育储蓄可以免收利息税,而原来的普通储蓄需要交纳利息税,所以以前存教育储蓄的人很多。但是现在普通储蓄也免收利息税了,所以教育储蓄已经失去了其优势,慢慢地退出历史舞台。
购买国债还是可以的(出示20xx国债利率)我们还以小组为单位,一起来分析一下,帮李阿姨设计一个合理的存款方案,使六年后的收益最大。
学生继续进行小组合作,教师巡视了解情况。最后进行汇报。
三、课堂小结
通过这节课的学习,同学们肯定收获满满,说说吧,你有哪些收获? 学生自由交流各自的收获体会。
看来百分数在我们的生活中真是无处不在啊,生活中蕴含着无穷的数学知识,希望同学们关注我们的生活,热爱我们的数学,积极用数学知识解决生活中的问题。
四、课后延伸
生活中不仅仅有百分数,还有千分数、万分数,请同学们课后阅读教材p16“你知道吗?”理解更多的知识。
五、课堂作业
你们也即将毕业,可以为自己的压岁钱也做一个理财计划,看看怎样存能够让六年后的收益最大?
板书设计:
生活与百分数
存6年 存2个三年期的最合算
人教版六年级数学比教案篇6
教学目标
1.使学生认识圆柱的底面,侧面和高,掌握圆柱的基本特征,发展学生的空间观念。
2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析、概括的能力。
重点掌握圆柱的基本特征。
难点圆柱的侧面积和它的展开图之间的关系。
教学方法观察法、分析法、归纳法。
学情分析
圆柱是人们在生产、生活中经常遇到的几何形体,学生对于圆柱体并不陌生,只是没有深刻的认识,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。
教学过程
一、创设情景,导入新课
问题:你学过那些立体图形?(长方体、正方体)。
今天老师要教同学们认识一个新的立体图形----圆柱体,简称圆柱。
请同学们拿出你准备的圆柱,老师检查。
老师也收集了一些圆柱的图片,请大家欣赏。
你还见过生活中那些物体的形状是圆柱体。
从一年级我们就知道圆柱体,你认为什么样的图形是圆柱体?说说看。
二、探究新知
1.从圆柱的图片中抽象出圆柱的立体图形。
教师:如果把它们画成立体图形是怎样的?想看吗?
课件演示:从图片中抽象出圆柱。
问:长方体和正方体最多看到几个面?圆柱我们能看到几个面?
2、探究圆柱的基本特征
(1)思考:圆柱的上下两个面是什么样的?叫做什么?
学生观察后得出结论。
教师:小组合作,动手动脑
圆柱两底面的大小怎样?你用什么方法证明?
画、剪、比等等方法。
(2)比较胖瘦两个圆柱,它们有什么不同?是什么原因?
让学生相互讨论,思考。得出:因为圆柱的底面半径不同,所以在高相等的情况下,半径大的圆柱就胖些。
(3)思考:用手摸圆柱周围的面,你有什么发现?
结论:是一个光滑的曲面。
(4)思考:圆柱两个底面之间的距离叫做什么?在哪里?有几条?
学生先用手比划下圆柱的高,在用彩笔画出圆柱的高。试试看,你能画几条。
白板演示,圆柱的高有无数条,
3、拓展应用,发展新知
在生活中,圆柱的高也有不同的称呼,你知道吗?(白板展示)
硬币是厚,井是深、钢管是长。
三、巩固提高,
1、完成p18的第1题
学生独立完成,老师检查。
2、完成p18的第2题
分析:分别以长方形的那条边为轴旋转而成,底面半径和高分别是多少,引导学生用一张长方形的纸来帮助理解
课题总结
通过今天的学习,你认识到了什么?请用“1、2、3、无数”来总结今天学习的内容,你会吗?说说看。
作业能力练习册第13-14页内容,回家体会理解记忆公式。
板书设计
圆柱体的认识
底面侧面高
2个1个无数条
大小一样的圆曲面
教学反思
圆柱是一种常见的立体图形。在实际生活中,圆柱形状的物体很多,学生对圆柱都有初步的感性认识。在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下基础。教学中,重点理解圆柱的高有无数条,而不仅仅是两个底面圆心的连线这一条。还让学生认识到圆柱的立体图形只有两个面。
人教版六年级数学比教案篇7
教学内容:
学会购物
教学目标:
1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性做出充分的'解释。
教学重点:
运用百分数相关的知识解决问题。
教学过程:
一、创设生活情境,引入新课
让学生说说生活中商家为了吸引顾客或扩大销量,常常搞一些什么样的促销活动?那如何学会合理购物呢,从而引入本节新课。
二、探究体验,经历过程
1、出示第12页的例5
2、让学生仔细读题,说说想到了什么?着重理解满100元减50元的意思
3、分别计算出在a商场和b商场所花的实际费用,进行比较
a商场:230×50%=115(元)
b商场:230—50×2=130(元)
4、从而得出在a商场购物更省钱,所以在购物时我们要根据促销方法的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这就是“合理购物”。
三、课堂练习
第12页做一做
四、作业
第15页第13、14题
人教版六年级数学比教案篇8
教材分析
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。
学情分析
由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。
教学目标
知识目标:理解圆柱体表面积的含义及求法。能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。
情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。
教学重点和难点
重点:教师引导,动手操作得出求圆柱表面积的方法。
难点:计算方法在生活中的应用。
教学过程
一、复习导入:
1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?
2、圆面积怎样求?
3、长方形的面积呢?
二、创设情境,引起兴趣:
出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》
三、自主探究,发现问题。
1、分组,讨论:
(1)、动手将圆柱的侧面沿着高剪开。(你发现了什么?)
圆柱的`侧面剪开发现侧面是一个长方形(正方形),
侧面积=长方形的面积=长×宽=地面周长×高。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
(2)、复习引导:(用旧解新)
上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)
(3)、小结:小组讨论,将公式延伸。
圆柱表面积=圆柱的侧面积+底面积×2
=ch+2π r2
=πdh+2π r2
2、知识的运用:(回到情景创设)
(1)、出示例题:
例2:假如一顶厨师的帽子,高28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?(用进一法结果保留正是整十平方厘米)
(2)、独立试做:
(3)、集体讲评。
(4)、讲解进一法。
3.巩固练习:
四、课堂总结:
这一节课重点学习了圆柱表面积的计算方法及运用。