2022人教版六年级数学下册教案7篇

时间:2023-03-24 作者:Youaremine

教案是教师为了提高教学水平预先拟订的应用文种,学会写教案,在今后的教学工作中起着很大作用,范文社小编今天就为您带来了2022人教版六年级数学下册教案7篇,相信一定会对你有所帮助。

2022人教版六年级数学下册教案7篇

2022人教版六年级数学下册教案篇1

教学内容:

九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

教学目标:

1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

3、引导学生探索和解决问题,体验转化及极限的思想方法。

教学重点:圆柱体体积的计算.

教学难点:理解圆柱体体积公式的推导过程.

教具:多媒体课件、圆柱形容器、水、橡皮泥。

教学过程:

一、激凝导入

师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

(2)生回答。

2、出示橡皮泥捏成的圆柱体。

那你有办法求出这个圆柱体橡皮泥的体积吗?

生(热情的):老师将它捏成长方体或正方体就可以了!

3、创设问题情境。

师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

那怎么办?

学生试说出自己的办法。

师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验、探究新知

1、推导圆柱的体积公式。

师:你们打算怎么去研究圆柱的体积?

小组同学讨论研究的方法。

2、学生动手操作感知

(1)学生以小组为单位操作体验。(操作学具,进行拼组)。

(2)学生小组汇报交流:

近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。

(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

3、教师课件演示圆柱转化成长方体的过程。

4、师生共同推导出圆柱的体积公式:

长方体的体积=底面积高

圆柱的体积=底圆柱面积高

v = sh

5、巩固公式

①v、s、h各表示什么?

②知道哪些条件就可以求圆柱的体积?

а、知道底面积和高可以直接用公式计算圆柱的体积;

b、知道底面半径和高,可以先计算出底面积,再计算体积;

c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

学生回答后师板书。

6、教学例4、例5。

课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

三、实践练习

1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

同学们,你们知道小林是怎样想的吗?

四、课堂总结;

通过本节课的学习,你有什么收获?

2022人教版六年级数学下册教案篇2

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:

负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

b、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

2022人教版六年级数学下册教案篇3

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:

负数的意义。

教学设备:班班通

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流。

……

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:… …)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示)。

哈尔滨: -15 ℃~-3 ℃

北京: -5 ℃~5 ℃

深圳: 12 ℃~23 ℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

(完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7.负数的历史。

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):

“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

逐一出示:

1.表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

2.表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。

3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

4.表示时间。(练习一第3题。)

5. “净含量:10±0.1g”表示什么意思?

四、总结延伸

1.学生交流收获。

2.总结。

简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

2022人教版六年级数学下册教案篇4

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

2022人教版六年级数学下册教案篇5

(1)两个质数的和是39,这两个质数的积是( )。

分析 本题考查的是质数的意义及数的奇偶性等知识。

两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。

解答 74

(2)120的因数有( )个。

分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。

解答 16

⊙探究活动

1.课件出示题目。

(1)一个长方体木块,长2.7 m,宽1.8 m,高1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?

(2)学校六年级有若干名同学排队做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少有多少人?

2.明确探究要求。(小组合作、思考、交流)

(1)这两道题分别考查什么知识?

(2)怎样解决这两个问题?

(3)具体的解答过程是怎样的?

3.汇报。

(1)先汇报前两个问题。

预设

生1:第(1)题考查的是应用因数的知识解决问题的能力。

生2:第(2)题考查的是应用倍数的知识解决问题的能力。

生3:根据题意,正方体的最大棱长应该是长方体长、宽、高的最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。

生4:根据题意,六年级人数比3、7、11的最小公倍数多2,所以先求出3、7、11的最小公倍数,再加2就可以了。

(2)尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)

(3)汇报解答过程。(指名板演,集体订正)

预设

生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因为27、18、15的最大公因数是3,所以正方体的棱长最大是3 dm。

生2:因为3、7、11的最小公倍数是3×7×11=231,231+2=233(人),所以六年级最少有233人。

4.小结。

解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。

⊙课堂总结

通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。

⊙布置作业

教材75页5、9题。

板书设计

因数、倍数、质数、合数

因数和倍数质数——质因数合数——分解质因数1公因数互质数最大公因数倍数——公倍数——最小公倍数能被2、5、3整除的数的特征。

2022人教版六年级数学下册教案篇6

教案设计

设计说明

本节课的教学设计主要突出以下几点:

1.注重学生的自主探究。

?数学课程标准》指出:课堂上应为学生提供积极思考与合作交流的空间。本教案首先创设了学生感兴趣的情境,然后给予学生充足的自主空间,让学生根据情境中的信息自主提出问题,并通过独立思考、小组合作等方式探究解题方法,发挥了学生的主体作用,提高了学生探究的积极性,为较好地掌握本节课的知识奠定了基础。

2.鼓励算法多样化。

?数学课程标准》把“鼓励算法多样化”作为第一学段的教学建议之一,但多样化之后的重要环节是“重视算法的优化”,因此,本教案让学生在交流、比较中充分展示自己的口算过程,在倾听他人的想法的过程中发现最优方法,这样设计有利于学生理解算理,完善并掌握算法,培养了学生的数感。

课前准备

教师准备ppt课件

教学过程

⊙创设情境,导入新课

1.创设情境。(课件出示)

师:同学们,你们爱吃水果吗?(爱吃)

师:看,老师这里有三种水果,分别是草莓、橙子和苹果,在水果盛装的过程中还有好多学问呢,你们想了解吗?(想)

2.导入新课。

师:同学们,我们以前学习了一位数乘一位数的口算方法,那么两位数乘一位数,整十、整百数,几百几十数又该如何口算呢?今天我们就进一步来学习口算乘法。

设计意图:兴趣是最好的老师,《数学课程标准》中指出:数学教学必须注重从学生感兴趣的事物出发,于是在上课开始,以同学们爱吃的水果创设情境,引起学生的学习欲望,在学生兴奋的状态下导入新课。

⊙开放探究,得出结论

一、教学例1。

1.观察情境图,提出问题。

课件出示例1情境图。

(1)引导学生认真观察情境图,找出图中提供的数学信息。(每筐装15盒草莓,一位阿姨买3筐)

(2)鼓励学生根据图中所提供的信息提出数学问题。(组织学生组内交流,发表自己的想法)

(3)引出例题中的问题:3筐草莓有多少盒?

2.探究口算方法,明确算理。

(1)引导学生理解题意并列式。

(学生汇报,老师板书:15×3)

(2)小组之间互相交流这样列式的理由。

(因为每筐装15盒草莓,一位阿姨买3筐,就是买3个15盒草莓,也就是求3个15是多少,所以列式为15×3)

(3)讨论、交流15×3的口算方法。

[把每筐草莓分成2份,一份是10盒,另一份是5盒,买3筐就是买3个10盒和3个5盒,先算3个10盒是10×3=30(盒),再算3个5盒是5×3=15(盒),最后把两次口算的结果加起来,30+15=45(盒)]

3.拓展延伸。

(1)出示题目:150×3=?

(2)思考口算方法,汇报交流。

(口算150×3时,先算15×3=45,再在45的末尾添上一个0)

(3)观察、对比,交流算式的不同之处。

(15×3与150×3进行比较,是把第一个乘数15扩大到原来的10倍,第二个乘数没有变化)

2022人教版六年级数学下册教案篇7

教学内容:

课本p63页第1题及练习十四的第1、2、4、5、6题

教学目标:

1、使学生初步学会根据除法的意义解决一些简单的实际问题。

2、使学生懂得从数学的角度提出学过的数学问题,并能够解决问题,培养学生应用数学的意识。

3、培养学生积极参与数学学习活动的兴趣,对数学有好奇心和求知欲。在交流中养成倾听他人想法以及尊重他人与人进行合作的良好习惯。

教学重点:

沟通乘、除法的联系,掌握口诀求商的方法。

教学难点:

灵活运用所学解决简单问题,提高计算的正确率。

教学方法:启发学生思考,探究合作学习,

教学准备:每人一张空白纸,口算卡

教学过程:

一、创设情景,复习导入

师:同学们,我们前几天学过了哪些知识,谁能说一下这些小朋友在干什么?

(设计意图:直奔主题,让学生在最短的时间内直接明确学习的内容和任务。)

二、回顾整理,建构网络

1、教学第63页主题图(课件出示)

师:你看懂了什么?

引导学生观察主题图,同桌互相说一说题意。

生:把除法算式有规律地排一下,还可以利用乘法口诀表的排列方式整理除法算式。

师:(1)发下一张空白的表格纸

(2)组织学生根据45句乘法口诀写出45道除法算式

(3)让学生以小组为单位按一定的规律合作整理除法算式,或者按除数相同的规律进行整理,培养学生井井有条的思维习惯,按规律办事的思想方法。

(4)归纳整理:一是把除数相同的算式归类。二是按商相同的算式归类(对于其他的方式也给予肯定)

(设计意图:利用乘法口诀的排列方式以小组为单位按一定的规律合作整理除法算式,培养学生井井有条的思维习惯,按规律办事的思想方法。)

三、重点复习,强化提高

学生做第64页的第1题

先算出每道算式的结果,写在对应动物的下面,然后再将所得7个结果按从小到大的顺序排列。

要求学生熟练应用乘法口诀求商,同时学会有序地思考问题的方法。

游戏形式做第64页第2题

先让学生看清加、减、乘、除的运算符号

使学生初步形成百以内四则运算的口算技能

学生独立完成第65页第4、6题,完成后找学生起来回答他是怎样做的。

做第65页中第5题

先让学生看懂图意

再让同桌两人为一组进行对口令活动

使学生进一步理解乘除法之间的关系,理解“倍”的意义。

(设计意图:用多种形式进行练习,提高学生的学习兴趣,巩固学生对表内除法计算的理解与熟练。)

四、自主检评,完善提高

1、27÷9=36÷4=56÷8=35÷7=42÷6=64÷8=

45÷5=8÷8=14÷7=18÷3=28÷7=54÷6=

2、你能给下面这些算式排排队吗?

7÷721÷345÷972÷936÷4

()>()>()>()>()

3、课堂总结

这节课你有什么收获?

板书设计

整理和复习(一)

除数相同商相同

18÷9=2

想:(二)九十八或9×()=18

18是9得2倍

教后反思:

本节课的复习中,在引导学生复习用乘法口诀求商时,可以利用乘法口诀表的排列方式,整理除法算式。让学生以小组为单位按一定的规律合作整理除法算式。如,按除数相同的'规律进行整理或按商相同的规律进行整理等。通过这样的整理培养学生井井有条的思维习惯,按规律办事的思想方法。同时,通过运算题的训练,提高学生的口算能力,使学生对乘除混合运算的顺序理解得更牢靠。