高一数学必修一教案6篇

时间:2024-04-11 作者:Animai

通过写一份教案,教师可以有意识地设计和引导学生解决教学中的重点问题和难点,仔细编写的教案可以帮助老师更好地评估学生的学习效果和学习成果,365文档网小编今天就为您带来了高一数学必修一教案6篇,相信一定会对你有所帮助。

高一数学必修一教案6篇

高一数学必修一教案篇1

教学目标

1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。

(2)能从数和形两个角度熟悉单调性和奇偶性。

(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。

2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。

3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。

(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

高一数学必修一教案篇2

教材:逻辑联结词(1)

目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:

一、提出课题:简单逻辑、逻辑联结词

二、命题的概念:例:125 ① 3是12的约数 ② 0.5是整数 ③

定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题

反例:3是12的约数吗? x5 都不是命题

不涉及真假(问题) 无法判断真假

上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

三、复合命题:

1、定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2、例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

(2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

垂直且平分⑤ 对角线互相平分

(3)0.5非整数⑥ 非0.5是整数

观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

3、其实,有些概念前面已遇到过

如:或:不等式 x2x60的解集 { x | x2或x3 }

且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

四、复合命题的构成形式

如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

即: p或q (如 ④) 记作 pq

p且q (如 ⑤) 记作 pq

非p (命题的否定) (如 ⑥) 记作 p

小结:1.命题 2.复合命题 3.复合命题的构成形式

高一数学必修一教案篇3

教学目标

1、掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2、通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3、通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

教材分析

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

教法建议

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣。

教学准备

教学目标

1、 知识与技能

(1)进一步理解表达式y=asin(ωx+φ),掌握a、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、 过程与方法

通过具体例题和学生练习,使学生能正确作出函数y=asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、 情感态度与价值观

通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点

重点:函数y=asin(ωx+φ)的图像,函数y=asin(ωx+φ)的性质。

难点: 各种性质的应用。

教学工具

投影仪

教学过程

?创设情境,揭示课题】

函数y=asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、布置作业: 习题1-7第4,5,6题。

课后小结

归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业: 习题1-7第4,5,6题。

板书

高一数学必修一教案篇4

学习目标

1、结合已学过的数学实例,了解归纳推理的含义;2、能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用、

2、结合已学过的数学实例,了解类比推理的含义;

3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用、

学习过程

一、课前准备

问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是

……所以n边形的内角和是

新知1:从以上事例可一发现:

叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。

新知2:类比推理就是根据两类不同事物之间具有

推测其中一类事物具有与另一类事物的性质的推理、

简言之,类比推理是由的推理、

新知3归纳推理就是根据一些事物的',推出该类事物的

的推理、归纳是的过程

例子:哥德巴赫猜想:

观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

归纳推理的一般步骤

1通过观察个别情况发现某些相同的性质。

2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。

※典型例题

例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和sn的归纳过程。

变式1观察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……

你能猜想到一个怎样的结论?

变式2观察下列等式:1=1

1+8=9,

1+8+27=36,

1+8+27+64=100,

……

你能猜想到一个怎样的结论?

例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。

变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式

例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、

圆的概念和性质球的类似概念和性质

圆的周长

圆的面积

圆心与弦(非直径)中点的连线垂直于弦

与圆心距离相等的弦长相等,

※动手试试

1、观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?

2如果一条直线和两条平行线中的一条相交,则必和另一条相交。

3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。

三、总结提升

※学习小结

1、归纳推理的定义、

2、归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)、

3、合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法

高一数学必修一教案篇5

教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性、了解有限集、无限集、空集概念,

教学重点:集合概念、性质;“∈”,“?”的使用

教学难点:集合概念的理解;

课型:新授课

教学手段:

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料p17)。

下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二、新课教学

“物以类聚,人以群分”数学中也有类似的分类。

如:自然数的集合0,1,2,3,……

如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

1、一般地,指定的某些对象的全体称为集合,标记:a,b,c,d,…

集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…

2、元素与集合的关系

a是集合a的元素,就说a属于集合a,记作a∈a,

a不是集合a的元素,就说a不属于集合a,记作a?a

思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

例1:判断下列一组对象是否属于一个集合呢?

(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母

(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数

(9)方程的实数解

评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。

3、集合的中元素的三个特性:

1、元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

2、元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的。集合

3、元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

集合元素的三个特性使集合本身具有了确定性和整体性。

4、数的集简称数集,下面是一些常用数集及其记法:

非负整数集(即自然数集)记作:n有理数集q

正整数集n__或n+实数集r

整数集z注:实数的分类

5、集合的分类原则:集合中所含元素的多少

①有限集含有限个元素,如a={-2,3}

②无限集含无限个元素,如自然数集n,有理数

③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ

三、课堂练习

1、用符合“∈”或“?”填空:课本p15练习惯1

2、判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”

(1)所有在n中的元素都在n__中( )

(2)所有在n中的元素都在z中( )

(3)所有不在n__中的数都不在z中( )

(4)所有不在q中的实数都在r中( )

(5)由既在r中又在n__中的数组成的集合中一定包含数0( )

(6)不在n中的数不能使方程4x=8成立( )

四、回顾反思

1、集合的概念

2、集合元素的三个特征

其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的

“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的

3、常见数集的专用符号、

五、作业布置

1、下列各组对象能确定一个集合吗?

(1)所有很大的实数

(2)好心的人

(3)1,2,2,3,4,5、

2、设a,b是非零实数,那么可能取的值组成集合的元素是

3、由实数x,-x,|x|,所组成的集合,最多含( )

(a)2个元素(b)3个元素(c)4个元素(d)5个元素

4、下列结论不正确的是( )

a、o∈nb、qc、oqd、-1∈z

5、下列结论中,不正确的是( )

a、若a∈n,则-anb、若a∈z,则a2∈z

c、若a∈q,则|a|∈qd、若a∈r,则

6、求数集{1,x,x2-x}中的元素x应满足的条件;

高一数学必修一教案篇6

1.理解等差数列的概念,把握等差数列的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判定一个数列是等差数列,了解等差中项的概念;

(2)正确熟悉使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

(3)能通过通项公式与图像熟悉等差数列的性质,能用图像与通项公式的关系解决某些问题.

2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透非凡与一般的辩证唯物主义观点.

关于等差数列的教学建议

(1)知识结构

(2)重点、难点分析

①教学重点是等差数列的定义和对通项公式的熟悉与应用,等差数列是非凡的数列,定义恰恰是其非凡性、也是本质属性的准确反映和高度概括,准确把握定义是正确熟悉等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作预备.假如学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的外形相对应.

⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的爱好. ⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.