教案是教师为了调动学生积极性预先起草的文字材料,制定教案是每一个教师都要学会的技能,下面是365文档网小编为您分享的人教版数学必修2教案8篇,感谢您的参阅。
人教版数学必修2教案篇1
教学准备
教学目标
知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。
能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。
德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。
教学重难点
本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。
本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。
教学过程
二、教法与学法分析
为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。在这个过程中,力求把握好以下几点:__
①通过实例,让学生发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。②营造__的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。③力求反馈的全面性、及时性。通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。⑤以启迪思维为核心,启发有度,留有余地,导而弗牵,牵而弗达。这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的方法,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。
三、教学程序设计
(4)等差中项:如果a、a、b成等差数列,那么a叫做a与b的等差中项。
说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。
2.导入新课
本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:
1,2,4,8,…,263
再来看两个数列:
5,25,125,625,...
···
说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:
判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。
-1,-2,-4,-8…
-1,2,-4,8…
-1,-1,-1,-1…
1,0,1,0…
提出问题:(1)公比q能否为零?为什么?首项a1呢?
(2)公比q=1时是什么数列?
(3)q>0是递增数列吗?q
说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。另外通过趣味性的问题,来提高学生的学习兴趣。激发学生发现等比数列的定义及其通项公式的强烈__。
3.尝试推导通项公式
让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。
推导方法:叠乘法。
说明:学生从方法一中学会从特殊到一般的方法,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。方法二是让学生掌握“叠乘”的思路。
4.探索等比数列的图像
等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果?它的图像如何?
变式2.等比数列{an}中,a2=2,a9=32,求q.
(学生自己动手解答。)
说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1,q,n,an四个量中,知道任意三个即可求另一个。并从这些题中掌握等比数列运算中常规的消元方法。
6.探索等比数列的性质
类比等差数列的性质,猜测等比数列的性质,然后引导推证。
7.性质应用
例3.在等比数列{an}中,a5=2,a10=10,求a15
(让学生自己动手,寻求多种解题方法。)
方法一:由题意列方程组解得
方法二:利用性质2
方法三:利用性质3
例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证:{an·bn}是等比数列。
8.小结
为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。
1、等比数列的定义,怎样判断一个数列是否是等比数列
2、等比数列的通项公式,每个字母代表的含义。
3、等比数列应注意那些问题(a1≠0,q≠0)
4、等比数列的图像
5、通项公式的应用(知三求一)
6、等比数列的性质
7、等比数列的概念(注意两点①同号两数才有等比中项
②等比中项有两个,他们互为相反数)
8、本节课采用的主要思想
——类比思想
9.布置作业
习题3.41②、④3.8.9.
10.板书设计
人教版数学必修2教案篇2
一、教材分析
在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.
比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.
画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力.“视图”是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”.用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”.
教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务.进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点.
三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成.因此,教科书主要通过提出问题,引导学生自己动手作图 来展示教学内容.教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视 图的作法,体会三视图的作用.对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图.教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流.
值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成.另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.
二、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感、态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
三、重点难点
教学重点:画出简单组合体的三视图,给出三视图和直观图,还原或想象出原实际图的结构特征.
教学难点:识别三视图所表示的几何体.
四、课时安排
1课时
五、教学设计
(一)导入新课
思路1.能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
我们常用三视图和直观图表示空间几何体,三视图是观察者从三个不同位置观察同一个几何体而画出的图形;直观图是观察者站在某一点观察几何体而画出的图形.三视图和直观图在工程建设、机械制造以及日常生活中具有重要意义.本节我们将在学习投影知识的基础上,学习空间几何体的三视图.
教师指出课题:投影和三视图.
思路2.
“横看成岭侧成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实地反映出物体的结构特征,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
教师点出课题:投影和三视图.
(二)推进新课、新知探究、提出问题
①如图1所示的五个图片是我国民间艺术皮影戏中的部分片断,请同学们考虑它们是怎样得到的?
图1
②通过观察和自己的认识,你是怎样来理解投影的含义的?
③请同学们观察图2的投影过程,它们的投影过程有什么不同?
图2
④图2(2)(3)都是平行投影,它们有什么区别?
⑤观察图3,与投影面平行的平面图形,分别在平行投影和中心投影下的影子和原图形的形状、大小有什么区别?
图3
活动:①教师介绍中国的民间艺术皮影戏,学生观察图片.
②从投影的形成过程来定义.
③从投影方向上来区别这三种投影.
④根据投影线与投影面是否垂直来区别.
⑤观察图3并归纳总结它们各自的特点.
讨论结果:①这种现象我们把它称为是投影.
②由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫做投影幕.
③图2(1)的投影线交于一点,我们把光由一点向外散射形成的投影称为中心投影;图2(2)和(3)的投影线平行,我们把在一束平行光 线照射下形成投影称为平行投影.
④图2(2)中,投影线正对着投影面,这种平行投影称为正投影;图2(3)中,投影线不是正对着投影面,这种平行投影称为斜投影.
⑤在平行投影下,与投影面平行的平面图形留下的影子和原平面图形是全等的平面图形;在中心投影下,与投影面平行的平面图形留下的影子和原平面图形是相似的平面图形.以后我们用正投影的方法来画出空间几何体的三视图和 直观图.
知识归纳:投影的分类如图4所示.
图4
提出问题
①在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图,请你回忆三视图包含哪些部分?
②正视图、侧视图和俯视图各是如何得到的?
③一般地,怎样排列三视图?
④正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到的几何体的正投影图,它们都是平面图形.观察长方体的三视图,你能得出同一个几何体的正视图、侧视图和俯视图在形状、大小方面的关系吗?
讨论结果:①三视图包含正视图、侧视图和俯视图.
②光线从几何体的前面向后面正投影,得到的投影图叫该几何体的正视图(又称主视图);光线从几何体的左面向右面正投影,得到的投影图叫该几何体的侧视图(又称左视图);光线从几何体的上面向下面正投影,得到的投影图叫该几何体的俯视图.
③三视图的位置关系:一般地,侧视图在正视图的右边;俯视图在正视图的下边.如图5所示.
图5
④投影规律:
(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.
(2)一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图和俯视图宽度一样,即正、俯视图——长对正;主、侧视图——高平齐;俯、侧视图——宽相等.
画组合体的三视图时要注意的问题:
(1)要确定好主视、侧视、俯视的方向,同一物体三视的方向不同,所画的三视图可能不同.
(2)判断简单组合体的三视图是由哪几个基本几何体生成的,注意它们的生成方式,特别是它们的交线位置.
(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线,用虚线画出.
( 4)要检验画出的三视图是否符合“长对正、高平齐、宽相等”的基本特征,即正、俯视图长对正;正、侧视图高平齐;俯、侧视图宽相等,前后对应.
由三视图还原为实物图时要注意的问题:
我们由实物图可以画出它的三视图,实际生产中,工人要根据三视图加工零件,需要由三视图还原成实物图,这要求我们能由三视图想象它的空间实物形状,主要 通过主、俯、左视图的轮廓线(或补充后的轮廓线)还原成常见的几何体,还原实物图时,要先从三视图中初步判断简单组合体的组成,然后利用轮廓线(特别要注意虚线)逐步作出实物图.
(三)应用示例
思路1
例1 画出圆柱和圆锥的三视图.
活动:学生回顾正投影和三视图的画法,教师引导学生自己完成.
解:图6(1)是圆柱的三视图,图6(2)是圆锥的三视图.
(1) (2)
图6
点评:本题主要考查简单几何体的三视图和空间想象能力.有关三视图的题目往往依赖于丰富的空间想象能力.要做到边想着几何体的实物图边画着三视图,做到想图(几何体的实物图)和画图(三视图)相结合.
变式训练
说出下列图7中两个三视图分别表示的几何体.
(1) (2)
图7
答案:图7(1)是正六棱锥; 图7(2)是两个相同的圆台组成的组合体.
例2 试画出图8所示的矿泉水瓶的三视图.
活动:引导学生认识这种容器的结构特征.矿泉水瓶是我们熟悉的一种容器,这种容器是简单的组合体,其主要结构特征是从上往下分别是圆柱、圆台和圆柱.
图8 图9
解:三视图如图9所示.
点评:本题主要考查简单组合体的三视图.对于简单空间几何体的组合体,一定要认真观察,先认识它的基本结构,然后再画它的三视图.
变式训练
画出图10所示的几何体的三视图.
图10 图11
答案:三视图 如图11所示.
思路2
例1 (2007安徽淮南高三第一次模拟,文16)如图12甲所示,在正方体abcd—a1b1c1d1中,e、f分别是aa1、c1d1的中点,g是正方形bcc1b1的中心,则四边形agfe在该正方体的各个面上的投影可能是图12乙中的____________.
甲 乙
图12
活动:要画出四边形agfe在该正方体的各个面上的投影,只需画出四个顶点a、g、f、e在每个面上的投影,再顺次连接即得到在该面上的投影,并且在两个平行平面上的投影是相同的.
分析:在面abcd和面a1b1c1d1上的投影是图12乙(1);在面add1a1和面bcc1b1上的投影是图12乙(2);在面abb1a1和面dcc1d1上的投影是图12乙(3).
答案:(1)(2)(3)
点评:本题主要考查平行投影和空间想象能力.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这 些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完 成.
变式训练
如图13(1)所示,e、f分别为正方体面add′a′、面bcc′b′的中心,则四边形bfd′e在该正方体的各个面上的投影可能是图13(2)的___________.
(1) (2)
图13
分析:四边形bfd′e在正方体abcd—a′b′c′d′的面add′a′、面bcc′b′上的投影是c;在面dcc′d′上的投影是b;同理,在面abb′a′、面abcd、面a′b′c′d′上的投影也全是b.
答案:b c
例2 (2007广东惠州第二次调研,文2)如图14所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )
甲 乙 丙
图14
①长方体 ②圆锥 ③三棱锥 ④圆柱
a.④③② b.②①③ c.①②③ d.③②④
分析:由于甲的俯视图是圆,则该几何体是旋转体,又因正视图和侧视图均是矩形,则甲是圆柱;由于乙的俯视图是三角形,则该几何体是多面体,又因正视图和侧视图均是三角形,则该多面体的各个面都是三角形,则乙是三棱锥;由于丙的俯视图是圆,则该几何体是旋转体,又因正视图和侧视图均是三角形,则丙是圆锥.
答案:a
点评:本题主要考查三视图和简单几何体的结构特征.根据三视图想象空间几何体,是培养空间想象能力的重要方式,这需要根据几何体的正视图、侧视图、俯视图的几何特征,想象整个几何体的几何特征,从而判断三视图所描述的几何体.通常是先根据俯视图判断是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.
变式训练
1.图15是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.
图15 图16
分析:由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体是上面一个圆柱,下面是一个四棱柱拼接成的组合体.
答案:上面一个圆柱,下面是一个四棱柱拼接成的组合体.该几何体的形状如图16所示.
2.(2007山东高考,理3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )
图17
a.①② b.①③ c.①④ d.②④
分析:正方体的三视图都是正方形,所以①不符合题意,排除a、b、c.
答案:d
点评:虽然三视图的画法比较繁琐,但是三视图是考查空间想象能力的重要形式,因此是新课标高考的必考内容之一,足够的空间想象能力才能保证顺利解决三视图问题.
(四)知能训练
1.下列各项不属于三视图的是( )
a.正视图 b.侧视图 c.后视图 d.俯视图
分析:根据三视图的规定,后视图不属于三视图.
答案:c
2.两条相交直线的平行投影是( )
a.两条相交直线 b.一条直线
c.两条平行直线 d.两条相交直线或一条直线
图18
分析:借助于长方体模型来判断,如图18所示,在长方体abcd—a1b1c1d1中,一束平行光线从正上方向下照射.则相交直线cd1和dc1在面abcd上的平行投影是同一条直线cd,相交直线cd1和bd1在面abcd上的平行投影是两条相交直线cd和bd.
答案:d
3.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,如图19所示.甲说他看到的是“6”,乙说他看到的是“ 6”,丙说他看到的是“ 9”,丁说他看到的是“9”,则下列说法正确的是( )
图19
a.甲在丁的对面,乙在甲的左边,丙在丁的右边
b.丙在乙的对面,丙的左边是甲,右边是乙
c.甲在乙的对面,甲的右边是丙,左边是丁
d.甲在丁的对面,乙在甲的右边,丙在丁的右边
分析:由甲、乙、丙、丁四人的叙述,可以知道这四人的位置如图20所示,由此可得甲在丁的对面,乙在甲的右边,丙在丁的右边.
图20
答案:d
4.(2007广东汕头模拟,文3)如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为( )
a.棱锥 b.棱柱 c.圆锥 d.圆柱
分析:由于俯视图是一个圆及其圆心,则该几何体是旋转体,又因正视图与侧视图均为全等的等边三角形,则该几何体是圆锥.
答案:c
5.(2007山东青岛高三期末统考,文5)某几何体的三视图如图21所示,那么这个几何体是( )
图21
a.三棱锥 b.四棱锥 c.四棱台 d.三棱台
分析:由所给三视图可以判定对应的几何体是四棱锥.
答案:b
6.(2007山东济宁期末统考,文5)用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图22所示,则搭成该几何体需要的小正方体的块数是( )
图22
a.8 b.7 c.6 d.5
分析:由正视图和侧视图可知,该几何体有两层小正方体拼接成,由俯视图,可知最下层有5个小正方体,由侧视图可知上层仅有一个正方体,则共有6个小正方体.
答案:c
7.画出图23所示正四棱锥的三视图.
图23
分析:正四棱锥的正视图与侧视图均为等腰三角形,俯视图为正方形,对角线体现正四棱锥的四条侧棱.
答案:正四棱锥的三视图如图24.
图24
(五)拓展提升
问题:用数个小正方体组成一个几何体,使它的正视图和俯视图如图25所示,俯视图中小正方形中的字母表示在该位置的小立方体的个数.
(1)你能确定 哪些字母表示的数?
(2)该几何体可能有多少种不同的形状?
图25
分析:解决本题的关键在于观察正视图、俯视图,利用三视图规则中的“在三视图中,每个视图都反映物体两个方向的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸”.又“正视图与俯视图长对正,正视图与侧视图高平齐,俯视图与侧视图宽相等”,所以,我们可以得到a=3,b=1,c=1,d,e,f中的最大值为2.
解:(1)面对数个小立方体组成的几何体,根据正视图与俯视图的观察我们可以得出下列结论:
①a=3,b=1,c=1;
②d,e,f中的最大值为2.
所以上述字母中我们可以确定的是a=3,b=1,c=1.
(2)当d,e,f中有一个是2时,有3种不同的形状;
当d,e,f有两个是2时,有3种不同的形状;
当d,e,f都是2时,有一种形状.
所以 该几何体可能有7种不同的形状.
(六)课堂小结
本节课学习了:
1.中心投影和平行投影.
2.简单几何体和组合体的三视图的画法及其投影规律.
3.由三视图判断原几何体的结构特征.
(七)作业
习题1.2 a 组 第1、2题.
人教版数学必修2教案篇3
1教学目标
1.知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法.
2.能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
2学情分析
通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。
3重点难点
重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。
难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(二).尝试学习
1.柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积s表=s侧+2s底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积s侧=__________,表面积s表=__________.
2.锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积s表=s侧+s底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积s侧=__________,表面积s表=__________.
3.台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积s表=s侧+s上底+s下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积s侧=____________,表面积s表=________________________.
(三).互动课堂
例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,侧棱长为b,则其侧面积为()
a. b.ab c.(+)ab d.ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是()
a.2π b. c.6π d.9?
(2)已知棱长均为5,底面为正方形的四棱锥s-abcd,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为()
a. b.2 c. d.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()
a.81π b.100π c.14π d.169?
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
(4)求棱锥侧面积的一般方法:定义法.
(5)求圆锥侧面积的一般方法:公式法:s侧=πrl.
(6)求棱台侧面积的一般方法:定义法.
(7)求圆台侧面积的一般方法:公式法s侧=2(r+r′)l.
五、当堂检测
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()
a.32 b.16+16
c.48 d.16+32 网]
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为()
a.180 b.200 c.220 d.240
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于()
a.6 b.6π c.3π d.6?
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
1.3空间几何体的表面积与体积
课时设计 课堂实录
1.3空间几何体的表面积与体积
1第一学时 教学活动 活动1【导入】第1课时柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(二).尝试学习
1.柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积s表=s侧+2s底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积s侧=__________,表面积s表=__________.
2.锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积s表=s侧+s底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积s侧=__________,表面积s表=__________.
3.台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积s表=s侧+s上底+s下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积s侧=____________,表面积s表=________________________.
(三).互动课堂
例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,侧棱长为b,则其侧面积为()
a. b.ab c.(+)ab d.ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是()
a.2π b. c.6π d.9?
(2)已知棱长均为5,底面为正方形的四棱锥s-abcd,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为()
a. b.2 c. d.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()
a.81π b.100π c.14π d.169?
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
(4)求棱锥侧面积的一般方法:定义法.
(5)求圆锥侧面积的一般方法:公式法:s侧=πrl.
(6)求棱台侧面积的一般方法:定义法.
(7)求圆台侧面积的一般方法:公式法s侧=2(r+r′)l.
五、当堂检测
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()
a.32 b.16+16
c.48 d.16+32 网]
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为()
a.180 b.200 c.220 d.240
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于()
a.6 b.6π c.3π d.6?
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
人教版数学必修2教案篇4
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)能用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:
新授课
教学重点:
集合的交集与并集的概念;
教学难点:
集合的交集与并集 “是什么”,“为什么”,“怎样做”;
教学过程:
一、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(p9思考题),引入并集概念。
二、 新课教学
1、 并集
一般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集(union)
记作:a∪b 读作:“a并b”
即: a∪b={x|x∈a,或x∈b}
venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合a与b的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合a与b的并集
① a={6,8,10,12} b={3,6,9,12}
② a={x|-1≤x≤2} b={x|0≤x≤3}
(过度)问题:在上图中我们除了研究集合a与b的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合a与b的交集。
2、交集
一般地,由属于集合a且属于集合b的元素所组成的集合,叫做集合a与b的交集(intersection)。
记作:a∩b 读作:“a交b”
即: a∩b={x|∈a,且x∈b}
交集的venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合a与b的公共元素组成的集合。
例题2求集合a与b的交集
③ a={6,8,10,12} b={3,6,9,12}
④ a={x|-1≤x≤2} b={x|0≤x≤3}
拓展:求下列各图中集合a与b的并集与交集(用彩笔图出)
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3、例题讲解
例3(p12例1):理解所给集合的含义,可借助venn图分析
例4 p12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
4、 集合基本运算的一些结论:
a∩b a,a∩b b,a∩a=a,a∩ = ,a∩b=b∩a
a a∪b,b a∪b,a∪a=a,a∪ =a,a∪b=b∪a
若a∩b=a,则a b,反之也成立
若a∪b=b,则a b,反之也成立
若x∈(a∩b),则x∈a且x∈b
若x∈(a∪b),则x∈a,或x∈b
人教版数学必修2教案篇5
一. 学习目标
(1)通过实例体会分布的意义与作用; (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,频率折线图; (3)通过实例体会频率分布直方图,频率折线图,茎叶图的各自特点,从而恰当的选择上述方法分析样本的分布,准确的作出总体估计。
二. 学习重点
三.学习难点
能通过样本的频率分布估计总体的分布。
四.学习过程 (一)复习引入
(1 )统计的核心问题是什么?
(2 )随机抽样的几种常用方法有哪些?
(3)通过抽样方法收集数据的目的是什么?
(二)自学提纲
1.我们学习了哪些统计图?不同的统计图适合描述什么样的数据?
2.如何列频率分布表?
3.如何画频率分布直方图?基本步骤是什么?
4.频率分布直方图的纵坐标是什么?
5.频率分布直方图中小长方形的面积表示什么?
6.频率分布直方图中小长方形的面积之和是多少?
(三)课前自测
1.从一堆苹果中任取了20只,并得到了它们的质量(单位:g)数据分布表如下:
分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 频数 1 2 3 10 1 则这堆苹果中,质量不小于120g的苹果数约占苹果总数的__________%. 2.关于频率分布直方图,下列说法正确的是( ) a.直方图的高表示该组上的个体在样本中出现的频率 b.直方图的高表示取某数的频率 c.直方图的高表示该组上的样本中出现的频率与组距的比值 d.直方图的高表示该组上的个体在样本中出现的频数与组距的比值 3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教学 典例:城市缺水问题(自学教材65页~68页)
问题1.你认为为了较为合理地确定出这个标准,需要做哪些工作? 2.如何分析数据?根据这些数据你能得出用水量其他信息吗? 知识整理: 1.频率分布的概念: 频率分布: 频数: 频率:
2.画频率分布直方图的步骤: (1).求极差: (2).决定组距与组数 组距: 组数: (3).将数据分组 (4).列频率分布表 (5).画频率分布直方图 问题: .
1.月平均用水量在2.5—3之间的频率是多少?
2.月均用水量最多的在哪个区间?
3.月均用水量小于4.5 的频率是多少?
4.小长方形的面积=?
5.小长方形的面积总和=?
6.如果希望85%以上居民不超出标准,如何制定标准?
7.直方图有那些优点和缺点?
例题讲解: 例1有一个容量为50的样本数据的分组的频数如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? (4)数据小于21.5的百分比是多少?
3.频率分布折线图、总体密度曲线 问题1:如何得到频率分布折线图 ? 频率分布折线图的概念:
问题2:在城市缺水问题中将样本容量为100,增至1000,其频率分布直方图的情况会有什么变化?假如增至10000呢?
总体密度曲线的概念:
注:用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。
4. 茎叶图 茎叶图的概念: 茎叶图的特征:
小结:.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
课堂小结:
当堂检测:
1. 一个社会调查机构就某地居民的月收入调查了10000人, 并根据所得数据画了样本的频率分布直方图(如下图)。 为了分析居民的收入与年龄、学历、职业等方面的关系, 要从这10000人中再用分层抽样方法抽出100人作进一步 调查,则 [2500,3000)(元)月收入段应抽取 人。
2、为了解某校高三学生的视力情况,随机抽查了该校200名高三学生的视力情况,得到频率分布直方图(如图), 由于不慎将部分数据丢失,但知道前四组的频数成等比数 列,后6组的频数成等差数列,设最多一组学生数为a,视 力在4.6到5.0之间的频率为b,则
a+b= . 3.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则ba=______. 4.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181
(1)列出样本的频率分布表。
(2)画出频率分布直方图。
(3)画频率分布折线图;
人教版数学必修2教案篇6
教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化. 教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计.
教学过程:
一、复习准备:1. 试用秦九韶算法求多项式52()42f_x
当3x时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?
二、讲授新课:1. 教学进位制的概念:①进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制.
同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139②一般地,任意一个k进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即110110()110110...(0,0,...,,)nnnnknnnnaaaaakaaakakakakak.
如:把(2)110011化为十进制数,(110011=125+124+023+022+121+120=32+16+2+1=51. 把八进制数(8)7348化为十进制数,3210(8)7348783848883816.
2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数. (学生板书教师点评师生共同总结将非十进制转为十进制数的方法)分析此过程的算法过程,编写过程的程序语言. 见p34 ②练习:将(5)2341、(3)121转化成十进制数. ③例2、把89化为二进制数. 分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)
上述方法也可以推广为把十进制化为k进制数的算法,这种算法成为除k取余法. ④练习:用除k取余法将89化为四进制数、六进制数. ⑤例3、把二进制数(2)11011.101化为十进制数. 解:4(2)11011.101121202121212021227.625.
(小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制方法:进制互化3. 小结:进位制的定义;进位制之间的互化.
三、巩固练习:1、练习:教材p35第3题
四、作业:教材p38第3题
人教版数学必修2教案篇7
一、教学目标
1.知识与技能:
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,
思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;
②其余各面都是平行四边形;
③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
人教版数学必修2教案篇8
教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一. 基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.
二.问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300 km的海面p处,并以20 km / h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,
并以10 km / h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一. 小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:
(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:p80闯关训练