六年级数学广角教案8篇

时间:2023-07-14 作者:dopmitopy

写教案是教师应该要掌握的一项技能,作为教师应该都会将教案提前准备好吧,下面是365文档网小编为您分享的六年级数学广角教案8篇,感谢您的参阅。

六年级数学广角教案8篇

六年级数学广角教案篇1

(一)教学目标

1、使学生通过自主研究发现图形中隐藏着的书的规侓,并会应用所发现的规侓。

2、使学生会利用图型来解决一些有关的问题。

3、使学生在解决数学问题的过程中,体会和掌握数形结合`、归纳推理、极限等基本的数学思想。

(二)内容安排及其特点

1、教学内容和作用。

数形结合是一种非常重要的数学思想,把数与行结合起来解决问题可使复杂的问题变得更简单,使抽象的问题变得更直观。

数与形相结合的例子在小学教材中比比皆是。有的时候,是图形中隐含着数的规侓,可利用数的规侓来解决图形的问题。有时候,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。尤其是小学生思维的抽象程度还不够高.经常需要借助直观模型来帮助理解。例如:利用长方形模型来教学乘法的算理,利用线段图来帮助学生理解分数除法的算理,利用面积模型来解释两位乘两位数的算理、乘法分配侓、完全平方公式等(如下图)。

还有时候,数与形密不可分,可用“数”来解决“形”的问题,也可以用“形”来解决“数”的问题。例如:几何及微积分中曲线与方程、方程组及函数与图像互为工具互为解释,有机融合。小学中的正比例关系和反比比例关系图象也很好的反映了这样的思想。

本单元中,教材以“1+3+5+7+……+(2n-1)=n2”“1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……=1”为例,引导学生认识和利用数学与形的结合,可以解决一些有趣的数学问题。

具体编排结构如下:

等差数列1,3,5,…之和与正方形数的关系 例1

求等比数列1/2,1/4,1/8,…之和 例2

从上表可以看出,本单元的教学内容分为两个层次。

一是使学生通过数与形的对照,利用图形直观形象的特点表示出数的规律。例如,例1中,从图形的角度直观的理解“正方形数”和“平方数”的特点。

二、是借助图形解决一些比较抽象的、复杂的、不好解释的问题。例如,例2中,解决1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……的求和问题,教材利用分数意义的直观模型,使学生直观的理解“无限”的抽象概念;再如,练习二十二第6题,通过画示意图的方式可以比较便捷的解决比较抽象的问题。

2、教材编排特点。

本单元教材在编排上有下面几个特点。⑴ 突出探索规律、应用规律的编排意图。不管是数还是形,都突出对其规律的探索。例如,通过观察和计算1、1+3、1+3+5、1+3+5+7+…既能发现加数的规律(从1开始的连续奇数的相加),又能发现和的规律(都是连续的正方形数);通过观察和计算1/2+1/4、1/2+1/4+1/8、1/2+1/4+1/8+1/16,…同样,既能发现加数的规律,又能发现和的规律。在发现规律的基础上,通过推理,再引导学生把规律应用于一般的情形,解决问题。

⑵ 在利用数形解决问题的过程中积累基本的活动经验,培养基本的数学思想。例如,在例2中,让学生通过计算,发现和越来越趋向于1,感受什么叫“无限接近”。虽然无法一一穷举所得的结果,但可以利用观察到的规律进行“无穷无尽的”类推。使学生在这一过程中体会推理和极限的思想。

(三)教学建议

1、引导学生数形结合,相互印证。

形的问题中包含数的规律,数的问题也可以用形来帮助解决,教学时,要让学生通过解决问题体会到数与形的这种完美结合。既可以从数的角度出发,让学生看看可以怎样用图形来表示数的规律,也可以让学生寻找图形中所包含的数的规律。通过数与形的对应关系,互相印证结果、感受数学的魅力。例如,在例1中可以先让学生计算1+3+5+…的得数,使学生发现得到的和都是“平方数”,再通过图形的规律理解“平方数”和“正方形数”的含义。也就是说,如果用1个小正方形、3个小正方形、5个小正方形……可以共同拼出一些大小不一的大正方形图。也可以有规律的呈现由小正方形拼成的大小不一的大正方形图,让学生看看前后两个大正方形图相差多少个小正方形,例如,边长是2的大正方形和边长是1大正方形,相差的是3个小正方形;边长是3的大正方形和边长是2大正方形,相差的是5个小正方形……相差的小正方形数正好是“?”形中的小正方形数。因此,每个大正方形图中都隐藏着一个算式,即1+3+5+…+(2n-1)=n2。

2、使学生感受到用形来解决数的有关问题的直观性与简捷性。

图形的直观、形象的特点,决定了化数为形往往能够达到以简驭繁的目的。例如,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加的结果为1。但是如果用圆和线段的图形加以说明,学生则比较容易理解当一个数无限趋近于1时,其结果就是1.一个极其抽象的极限问题,由于用图形来解决,就变得十分直观和便捷了。

3、引导学生从不同的角度探索数与形的通用模式。

小学阶段,虽然不要求写出一个数列的通式,但可以通过数形结合的方法,利用图形的规律,从不同的角度,用自己的语言描述出数列的通用模式。例如,第109页第1题,根据例1的结论,很容易得到第n个图形中最外围的小正方形数为:(2n+1)2-(2n-1)2,也可以从结果看到第一个图最外圈有8个小正方形,第二个图最外圈有8×2个小正方形,第三个图最外圈有83个小正方形……通过推理,可知第n个图最外圈就有8×n个小正方形,每一次都是在前一个图的基础上增加8个小正方形。还可以引导学生进一步思考:每次多的这8个小正方形都是怎么来的?使学生观察到是由于每边增加2个小正方形所产生的。

六年级数学广角教案篇2

一、教材分析:

本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

二、三维目标:

1、知识与技能:

引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:

(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等

活动的学习方法,渗透数形结合的思想。

(2)学会与人合作,并能与人交流思维过程和结果。

3、情感态度与价值观:

(1)积极参与探索活动,体验数学活动充满着探索与创造。

(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体

验学数学、用数学的乐趣。

(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。

(4)理解知识的产生过程,受到历史唯物注意的教育。

三、教学重点:

应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。

四、教学难点:

理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

五、教学措施:

1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

六、课时安排:3课时

鸽巢问题-------------------1课时

“鸽巢问题”的具体应用------1课时

练习课---------------------1课时

六年级数学广角教案篇3

?教学内容】

教材第110页第3题,练习二十五第8~13题。

?教学目标】

1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。

2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。

3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。

?重点难点】

重、难点:解决三角形相关问题,画一个图形的轴对称图形。

?教学过程】

一、复习三角形

1.复习三角形的特性。

指名说一说三角形有什么特性,并举例说明三角形特性在

现实生活中的应用。

2.复习三角形三边之间的关系。

指名说一说三角形三边有什么关系。

强调:三角形任意两边的和都大于第三边。

3.复习三角形的分类。

三角形可以分为哪几类?你是怎么分的?

4.完成教材第110页的第3题。

二、复习轴对称、平移

1.举例说明生活中常见的轴对称图形。

2.说说轴对称图形的特点。

3.平移。

三、复习观察物体

在同一角度观察物体,最多能看到物体的几个面?

四、课堂练习

完成教材练习二十五第8~13题。

五、课堂小结

我们这节课复习了什么内容?你有什么收获?

六、同步训练

教学至此,敬请选用《新领程》相关习题。

六年级数学广角教案篇4

?学情分析】

抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。

1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。

?教学方法】

1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。

2. 适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

3.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”arr;哪是“抽屉”arr; 平均分 arr;商+1

4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。

5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。

?教学目标】

知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形

成比较抽象的数学思维。

情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力。

?教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

?教学难点】理解抽屉原理,并对一些简单实际问题加以“模型化”。

?教具、学具准备】学生:每组5根小棒、4个杯子;课件

?教学过程】

一、联系生活,激趣导入

用一副牌展示“抽屉原理”。 (师生合作完成魔术)

师:同学们喜欢魔术吗?今天老师客串一下魔术表演,想见识见识吗?请全班同当老师的助手,每一个小组有一副牌,大家知道一副扑克牌有54张去掉两张王牌,剩52张,现在用它变一个魔术。这个魔术的名字叫“猜花色”。在组长的组织下每人随意抽五张牌先反扣在桌上。我猜,每位同学的手中至少有两张花色是相同的。是这样的吗?见证奇迹的时刻到了。请翻牌看看,老师猜得准么? 生:猜对了。

生:猜对了,给点掌声吧。老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理----抽屉原理(板书课题)相信你们认真学习后,会明白的。

(设计意图: 老师通过一个魔术展示了在生活里 “抽屉原理”问题中的一种,勾起了学生对这个魔术很好奇心,为原本枯燥的数学课注入了活力。)

师:看看这节课的学习目标。(指名读一读)

(设计意图: 建立明确的目标,就会引起师生注意的集中性和指向性,引起对某类知识,某种能力的强烈注意。就能在最短的时间,最省力地完成“三个维度”的目标,最有效的提高教学质量。)

二、动手实验、 探究新知

师:为研究这个原理,老师为大家准备了什么?

生:小棒和杯子(板书:小棒、杯子)

师:那我们今天就用小棒和杯子做几个有趣的数学实验来研究这个原理。

(一)第一步:研究4根小棒放入3个杯子中的现象。

1、请看大屏幕:

师:把4根小棒放进3个杯子里,请小组的同学摆摆看,在动手之前请看活动要求:

①4人为一组摆一摆,要求将小棒全部放进去,允许某个杯子空着。②边摆边记录下来,(记录时:可以用1 表示小棒,用 0 表示杯子(画一画)看看一共有几种摆法?

师补充:每个组要认真记录不同摆法。希望每个小组分工合作愉快,开始

2.汇报展示

要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

师:大部分学生都摆完了,谁来说说,你们是怎么摆的?

学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

4 0 03 1 0

2 2 02 1 1

(引导学生明确虽然摆放的顺序不一样,但是同一种放法)

师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。

师:还有别的放法吗?

生:没有了。

(3)引导观察,得出结论。

引导学生观察4种方法,从而得出:总有一个杯子里面至少有2根小棒。

师:是的,这4种放法,不管怎么放,你有什么发现?)

1组:(可能会出现不同发现)

2组:我们发现不管怎么放,总会有一个小杯子里面至少有2根小棒。强调至少!总有

师:说啥?再说一遍。

生:

师:还有谁发现了什么?

生:

(设计意图:这个环节鼓励每个小组都说出自己的看法,因为学生思维能力的不同,得出的结论也就不同。只有通过多种思维的碰撞,学生的逻辑思维能力、解决问题的能力才能提高,对抽屉原理的认识才会更加深刻。)

师:再次观察四种方法,哪种方法能直接得到这个结论。

这种分法,实际就是先怎么分的?(引导平均分)

师:关于平均分有没有问题?我有一个问题,为什么用平均分这一种方法,就能得出总有一个杯子里的至少有2根小棒这个结论。

(二)第二步:研究5根小棒放入4个杯子中的现象。

1、课件出示:5根小棒放进4个杯子里你感觉会出现什么情况。

师:再往下继续研究,5根小棒放在4个小杯子里你感觉会出现什么情况,

生猜测:5根小棒放在4个小杯子,不管怎么放,肯定有一个杯子里至少有2根小棒。

师:对不对需要实验验证,我们还要像刚才那样一一把所有摆法都列举出来吗?用什么方法操作验证这个结论对错就可以了。

生:用平均分的方法就可以了。

师:咱们试试看,小组合作交流,用这种平均分的方法操作验证,并像黑板上那样记录在学案里。

2、展示摆法,引导观察发现:

师:哪一个小组愿意展示分享一下?

生:5根,每个小杯子放一根,剩下的一根放在其中的一个小杯子。(实际演示一下)

师:谁和他的分法一样的,这种分法,实际就是先怎么分的?(板书:平均分)

课件演示

师:,既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗?

生:5÷4=1??1

师:能解释算式里每个数的意义吗?

生:5表示小棒数,4表示杯子是,商1表示平均每个杯子放进1根小棒,余数1表示还剩1根小棒。

师小结:要想发现存在着“总有一个杯子里一定至少有2根”,先平均分,余下1根,不管放在那个杯子里,一定会出现“总有一个杯子里一定至少有2根”。 )

3、学以致用---照这样的思路,继续往前走:

课件出示:把7根小棒放进6个小杯子里,总有一个杯子里至少有( )根,。

100根小棒放进99个小杯子里,总有一个杯子里至少有( )

根。

师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(小棒的数量与杯子的数量有什么关系?))还要操作验证吗?说说你的想法。

学生独立解决以上问题,在展示汇报时学生要说明白解决问题的方法是什么。

4、引导学生知识点小结:

师:小棒数比杯子数多1,总有一个盒子至少放进的小棒数怎么算,你用谁加上谁就是我们想要结果?

六年级数学广角教案篇5

教学目标:

1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

教学重点:

经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点:

运用 “鸽巢问题”,解决一些简单的实际问题。

教具准备:

每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

教学过程:

一、游戏引入:

师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

师小结:一定有一个杯子里至少有两个小球。

同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

二、探究原理:

1、动手摆一摆,感受原理。

(1)探究物体个数比抽屉多1的情况。

例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

全班分小组摆一摆。

各组长边摆边记录。教师板书,全班同学报数,一起记录。

联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

师:总有一个杯子至少有……

师:a、总有是什么意思?

师:b、“至少”又是什么意思? “至少squo;的意思是2根或2根以上。

师:如此往下想,7根小棒放在6个杯子里,

10根木棒放进9个杯子里

100根木棒放进99个杯子里会有怎么样的结论?

要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。

学生讨论。

师:想出什么办法?谁来说说。

刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

(边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

学生得出:只要小棒数量比杯子数量多1都有这样的结论。

2、探究商不是1的情况。

讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

那8本书进3个抽屉里。

10本书放进3个抽屉里又是怎样?你发现了什么?

我发现 7÷3=2……1

8÷3=2……2

10÷3=3……1

板书:至少数=商+1。

小结:我们今天探究的原理就是数学中有名的鸽巢原理。

三、本课总结:

鸽子÷鸽巢 = 商…… 余数

至少数 = 商+1

四、用今天知识来解决生活中的一些实际问题。

1、做一做

2、玩扑克的游戏。

五、板书:略

六年级数学广角教案篇6

设计说明:

数与形之间密不可分,它们相互转化,相辅相成。在课堂教学中适当地应用数形结合思想,把握好数形结合的度,就可以把问题化难为易,化繁为简。在引进新知、建构概念、解决问题时,还可以激发学生的学习兴趣,有利于发展学生的想象力,提高学生的思维能力。

1.重视数与形之间的联系,找到解题规律。 数形结合思想是小学阶段最重要的一种数学思想,在课堂教学中,重视数与形之间的联系,有助于学生抽象能力的提升。因此,教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数和与大正方形中每列(或每行)小正方形个数的关系,发现数与形之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。

2.借助数与形之间的关系解决相关问题。 从观察抽象的算式特点开始,先通过简单的计算找到规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用数形结合思想方法的同时,体验到数学的极限思想。

课前准备:

教师准备ppt课件

教学过程:

一、问题导入:

1+3+5+...+95+97+99=( )

设疑:怎样快速计算出这个算式的结果?

二、探究新知:

1.教学例1。

(1)课件出示例题。

观察图形,把算式补充完整。

1=()

1+3=()

1+3+5=()

1+3+5+7=()

(2)观察图形与算式,总结规律。

观察、讨论。 仔细观察,看一看上面的图形和算式左边的加数有什么关系。

汇报规律。 [规律一:算式左边加数的个数与对应的大正方形中每列(或每行)小正方形的个数相同。 规律二:算式左边加数的和是大正方形左下角的小正方形和其他“┐”形所包含的小正方形的个数和。 规律三:算式左边加数的和正好等于大正方形中每列(或每行)小正方形个数的平方。]

总结:即从1开始,几个连续奇数相加的和即是几的平方。

(3)运用规律解决问题。

1+3+5+7+9+11+13=()

=9²

(1+3+5+7+9+11+13=72)

1+3+5+...+95+97+99=( )

2.交流对用数形结合的方法解决问题的感悟。

(数形结合的方法可以把抽象的代数问题形象化,使其直观、简洁、易懂)

设计意图:教学时,观察、讨论相结合,引导学生借助不同的几何图形解决例题中的代数问题,使学生在理解、掌握例题中数与形关系的基础上,充分体会用数形结合方法解决问题的直观性,感悟数学的极限思想。

三、巩固练习

1. 1+3+5+7+5+3+1=( )

可以看成两部分:1+3+5+7=4²

5+3+1=3²

4²+3²=25

2.根据上面结论算一算:1+3+5+7+9+11+13+11+9+7+5+3+1=( )

原式=7²+6²=85

四、教师小结

六年级数学广角教案篇7

教学目标:

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主整理的活动,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

师出示问题(2)

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

师出示问题(3)

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。

整理完善知识结构。

师:在这一部分中我们为什么先学因数和倍数?

组织学生讨论和交流

师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

第二课时

教学目标

1、 经历自主回顾和整理整数、小数、分数四则运算的过程。

2、 能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、 体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报 本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

2、出示问题(2)

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、 估算。

(1) 出示问题(1)

先让生独立思考并判断,再回答是如何判断的。

(2) 出示问题(2)

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

师:这节课我们整理和回顾了什么内容?需要注意什么?

六年级数学广角教案篇8

线与角。〔教材第89~91页及第91页第1、2(1)题〕

1.了解两点确定一条直线和两条相交直线确定一个点,并能区分直线、线段和射线。

2.能结合具体情境认识角,会画出指定度数的角。

3.培养学生的动手能力和互相交流合作的意识。

重点:区分直线、线段和射线,认识角并会画角。

难点:理解线与角间的内在联系与区别。

量角器、尺子、课件。

师:我们在小学阶段学过哪几种线?认识哪些角?

生1:我们学过直线、射线、线段。

生2:我们认识直角、锐角、平角、钝角、周角。

师:这节课我们一起复习“线与角”。(板书课题:线与角)

1.复习线段、射线和直线。

课件出示:

师:你能说出上面的图形各是什么吗?

生:直线、射线、线段。

师:你能找出线段、射线、直线的区别吗?

学生分组讨论,教师巡视、辅导。

先请学生汇报结果,再给出下表,让学生完成。

端点个数 能否度量

线段

射线

直线

师:线段、射线和直线有什么联系?(线段和射线是直线的一部分)

师:长方形、正方形、三角形、平行四边形,它们的边是直线还是线段?(线段)

师:角的边是直线吗?

生:不是,角的边是射线。

2.角的整理与分析。

(1)让学生自己任意画一个角。

师:根据你画的角说一说,关于角,我们都学习了哪些知识?(板书:角)

教师画出一个角。

(2)学生回答,教师板书。

师:什么叫角?角的各部分名称是什么?

师:计量角的单位是什么?角的大小与什么有关?与什么无关?怎样画角?

师:按角的度数,角可以分为哪几种?

师根据学生的回答板书。

生1:由一点出发引出两条射线所组成的图形,叫作角。角由一个顶点和两条边组成。角的计量单位是度,符号是“°”。

生2:角的大小与两边张开的大小有关,与边的长短无关。

生3:根据角的度数,可以把角分为锐角、直角、钝角、平角、周角。

师:锐角是怎样的角?(教师画出图形并写出相应的特征)

师:大家能画出其余几种角的图形并说出它们的特征吗?

生:锐角是小于90°的角;直角等于90°;钝角大于90°且小于180°;平角等于180°;周角等于360°。

3.垂线和平行线。

师:在同一平面内,两条直线有哪几种位置关系?

生:相交(互相垂直与不垂直)和平行。

师:小组内互相说说什么叫互相垂直,什么叫平行线。

教师分别画出一组互相垂直和互相平行的直线。

生1:两条直线相交成直角时,这两条直线叫作互相垂直,一条直线叫作另一条直线的垂线。

生2:在同一平面内,不相交的两条直线叫平行线。

师:平行线间的距离有什么特点?

生:处处相等。

师:如何画一条直线的垂线和平行线?

学生分组讨论、交流,然后师生共同总结。

师:通过今天的复习,你掌握了哪些知识?

生1:能正确区分直线、线段和射线。

生2:能画出指定度数的角。

线与角

1.线

顶点个数 能否度量

线段 2 能

射线 1 不能

直线 无 不能

a 类

1.填空。

(1)线段有()个端点,射线有()个端点,直线()端点。

(2)两条直线相交组成4个角,如果其中一个角是90°,那么其他三个角是()角,这两条直线的位置关系是()。

(3)6时整,时针与分针所成角的度数是()。

(4)()决定了角的大小。

(5)135度角比平角小()度,比直角大()度。

2.判断。(对的在括号里画

估算。(教材第77~78页)

1.能结合具体情境进行估算并解释估算的过程,会选择合适的估算方法。

2.培养学生的估算习惯。

3.在解决具体问题的过程中感受估算的作用。

重点:能结合具体情境进行估算并叙述估算的过程。

难点:选择合适的估算方法。

课件。

课件出示教材第77页第2个主题图。

师:根据你估算的结果判断应该去哪个影院看电影。

生:应去星华影院。

师:六年级大约有多少人?

生:大约有270人。

师:这节课我们就一起来复习“估算”。(板书课题:估算)

师:在生活学习中,哪些时候要用到估算呢?

生1:买东西的时候要估算带的钱够买几件商品。

生2:计算前可以进行估算。

生3:计算后可以用估算的方法验证结果是否正确。

师:大家说得都很好,那么刚才那道题大家是用什么方法进行估算的?请你把自己的估算方法和小组内同学说一说。

生1:我的估算方法是把几个班的人数都看成40,40×6是240,所以应去星华影院。

生2:我的估算方法是把几个班的人数都看成50,50×6是300,所以应去星华影院。

生3:我的估算方法是把几个班的人数都看成45,45×6是270,所以应去星华影院。

师:大家都很棒,说出了不同的估算方法,希望大家在解决其他问题时也会选择合适的估算方法。

师:通过今天的复习,你掌握了哪些知识?

生:进一步理解了估算的过程,会选择合适的估算方法进行估算。

a 类

1.估一估下面各题的结果,并把错误的改正过来。

4200-500=3600891+208=1100404÷4=1139×49=20__

2.解决问题。

(1)电影院有31排座位,每排36个,育英小学980名同学去看电影,座位够吗?

(2)一本故事书有268页,小明每天看35页,一周能看完吗?

(3)师徒两人共同加工458个零件,师傅每天加工35个,徒弟每天加工30个,8天能完成任务吗?

(考查知识点:估算的意义;能力要求:能结合具体情境进行估算,会选择合适的估算方法)

b 类

某校组织学生春游,若租用45座客车,则有15人没有座位,若租同样数量的60座客车,则余一辆空车,其余刚好坐满。已知45座客车租金为220元,60座客车租金为300元。

(1)这个学校一共有学生多少人?

(2)怎样租车最划算?

(考查知识点: 估算的应用;能力要求:利用估算解决具体的实际问题)

课堂作业新设计

a 类:

1.略

2.(1)够(2)不能(3)能

b 类:

(1)240人

(2)租4辆45座客车和1辆60座客车最划算。

教材第77页“巩固与应用”

1.够不够

2.略

3.49≈5050×30=1500(字)15001528不能

4.略

5.小女孩儿估算的结果比精确结果大,小男孩儿估算的结果比精确结果小。