四则运算教案6篇

时间:2023-06-12 作者:Monody

在写教案之前,一定要对教学目标做出分析,大家在制定教案时一定要强调讲授内容要点,下面是365文档网小编为您分享的四则运算教案6篇,感谢您的参阅。

四则运算教案6篇

四则运算教案篇1

一、指导思想

以科学发展观为指导,以不断提高教育教学质量为目标,以积极、稳步、有效地实施深化新课程改革为主线,以教学为中心,务实创新,落实规范,提高效率,扎实推进素质教育,为打造 优质均衡和谐教育而努力。

二、学情分析

四(4)班共有学生68人,其中男生44人,女生24人。大部分学生性格开朗,学习兴趣浓厚,乐于参加各项活动。在语文学习方面,本班两极分化比较明显:优秀生平时乐于表达,善于交流,知识掌握牢固,如:梁珏星、王康任、陈涛等;个别孩子对阅读有浓厚的兴趣,思维活跃,;部分后进生上课好动,课后拖欠作业,学习质量不高。考虑到四年级是小学阶段非常关键的一个学年,本学期仍要重视学生学习习惯与兴趣的培养,加强硬笔书法的练习,提高全体学生的语文素养。

三、教材分析

(一)基本结构

本册共有课文32篇,其中精读课文17篇,略读课文15篇;教材后面还附有8篇选读课文,共40篇。

教材设计了8个专题。依次是:走遍千山万水、以诚待人、大自然的启示、战争与和平、热爱生命、田园生活、执著的追求、故事长廊。其中第三单元大自然的启示和第六单元田园生活还安排有综合性学习内容,使专题的学习内容与形式更加丰富多彩。

每个专题单元包括导语、课例和语文园地三大部分。每组开头的导语点明本组的专题,并提示学习要求。课例由4篇课文组成,其中精读课文2—3篇,略读课文1—2篇,精读课文后有思考练习题,略读课文前有一段连接语,将前后课文连接起来,并提示略读课文的学习要求。根据教学的需要,在一些课文后面安排有资料袋或阅读链接,以提供课文的背景资料,并丰富学生的阅读。

语文园地由5个栏目组成,其中有4个固定栏目:口语交际习作我的发现日积月累;另有宽带网趣味语文展示台或成语故事,这四项内容分别在全册8个语文园地中各安排两次。

(二)教材特点

本册是在四年级上册基础上编写的,教材的结构及思路是共同的,体现整套教材的一致性,它具备以下几个特点:

1.加强整合,围绕专题组织教材

(1)导语导学,整合单元内容。

(2)精读与略读课文的联系和整合。

(3)单元学习活动的贯通和整合。

2.安排综合性学习,全面落实语文课程标准提出的目标

3.加强导学功能,引导学生主动、积极地学习

4.丰富课本内容,拓宽学习资源

四、教学目标

本册通过精美的选文,在语言学习过程的熏陶和感染中,培养学生丰富的情感、积极的人生态度和正确价值观。在识字写字、阅读教学、口语交际、作文、综合性学习等学习和活动中,全面达到中年级的阶段教学目标。

本册学习要达到的主要目标:

1.认字200个,会写200个,养成主动识字的习惯。

2.会使用字典、词典,有独立识字的能力。能用钢笔熟练书写正楷字,用毛笔临摹字帖。

3.能用普通话正确、流利、有感情地朗读课文。

4.体会课文中关键词句表达情意的作用。

5.能初步把握文章的主要内容,体会文章表达的思想感情。能复述叙事性课文的大意。

6.养成读书看报的习惯,收藏并与同学交流图书资料。

7.在交谈中能认真倾听,养成向人请教、与人商讨的习惯。听人说话能把握主要内容,并能简要转述。能清楚明白地讲述见闻,并说出自己的感受和想法。

8.留心周围事物,勤于书面表达。能把内容写得比较清楚、比较具体。会写简短的书信便条。能修改习作中有明显错误的词句。

9.在综合性学习活动中,有目的地搜集资料,提出不懂的问题,开展讨论,解决生活中的简单问题。

五、教学措施

1.强化学习习惯的养成

语文教学的难点主要是如何让学生成为一个会学语文,用语文的人,所以在平常的教学中不仅仅是关注的知识的掌握,更主要的是让学生养成会学习爱学习的习惯,这学期将继续关注以下良好习惯的培养:

(1)课前预习与课后复习的习惯。

(2)能够自学课文的习惯。特别是精读课文,如何让学生自己抓住重难点,学会分析课文,体会文章的思想感情,理解文句的表达方法。通过略读课文学习方法的掌握,引导学生开展课外阅读活动。

(3)大胆表达自己思想的习惯以及主动与人合作的习惯。

(4)把写作当成是一种乐趣。爱写作也愿意写作。

(5)继续加强培养善于倾听的习惯,提高课堂教学的质量。

2.营造自主学习的情境

良好的学习情境让学生放松身心,又能把注意力集中在具体的学习目标上,通过有目的学习,慢慢养成良好的学习习惯。本册教科书为学生的学习活动创设了具体的学习情境,这种学习情境的创设主要是通过对话的方式来实现的。教学中,老师要创设民主、平等的学习氛围,要重视引导学生与文本对话、与文本作者对话、与学习伙伴对话、与自己的心灵对话,最终使学生达到和周围人和自然万物的对话,启迪学生用自己的方式进行学习,进而掌握语文学习的规律。

3.促进学习方式的改变

语文学习有其内在的规律,语文学习也有一个基本的步骤。教科书的呈现方式就是让学生从内心触摸到语文,在实际的语文学习中能习得方法,慢慢找到学习规律。因此,新课程下的语文学习尤其要重视自主、合作与探究。学生以自读课文和相互交流为基础,欣赏语言对文章内容及表现形式进行评价,同时获得审美体验。在感悟语言,积累语言的基础上领悟表达。理解内容是语文学习的基础,学会表达是语文学习的目的,在这个学习过程中学生会不断的产生问题,解决问题。学生通过阅读教科书,通过各种各样的学习活动,即使没有教师的指导,也会慢慢学会学习。

4.有效利用课程资源

充分利用语文课程资源,和其它学科、社会活动相结合,开展丰富多彩的语文实践活动。加强古诗诵读和优美词句的积累,推广看课外书,丰富学生的课外知识,引导学生在生活中学习语文、运用语文。

5.开展辅优补差活动

教学中既要注意培养那些优生,也要注意帮助后进生,缩小优秀生与后进生之间的差距,使全班同学都能在原有水平的基础上再上一个新台阶。

班级后进生帮助对象有:黄有诚、莫云丹、符式扬等。主要措施:1、作业面批、有错及时改正。2、课堂上优先提问、优先板演。3、结合学习情况老师抽时间个别辅导,请班级里的优秀生为其接对辅导。4、与科任老师、家长经常联系交流,形成教育合力。5、鼓励为主,及时表扬。6、重视思想教育,尊重信任,持之以恒,巩固后进生良好行为习惯。

对于梁珏星、王耀等优秀生要在培养阅读能力的基础上,重点指导其写作,强调真情实感的再现,给予写作技巧的指点,指导参与各种作文比赛;对于洪滨、许郑涛等要在阅读和理解方面多下工夫,培养他们对语文的热爱,在理解的基础上进行学习;重点指导写字和朗读,养成正确的书写习惯,做到三个一,养成大声朗读的好习惯。

六、教学进度

周次 日 期 教 学 内 容 备注

1 周前培训 古诗词三首(三课时)

2 桂林山水 记金华的双龙洞

七月的天山 语文园地??

3 二月初一 放假

4 中彩那天 万年牢

5 尊严 将心比心 语文园地二

6 自然之道 黄河是怎样变化的

蝙蝠和雷达

7 大自然的启示 语文园地三

8 夜莺的歌声 小英雄雨来 清明

9 一个中国孩子的呼唤 和我们享受春天

园地四

10 触摸春天 永生的眼睛 生命生命

11 花的勇气 语文园地五

12 期中复习 期中检测

五一休息

13 乡下人家 牧场之国 古诗词三首

14 麦哨 语文园地六

15 两个铁球同时着地 全神贯注 父亲的菜园

16 鱼游到了纸上 语文园地七

17 寓言两则 文成公主进西藏 渔夫的故事 端午

18 普罗米修斯 语文园地八

19 复习

20 期末考试

四则运算教案篇2

教学目标:

1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。

2、使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。

3、使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。

重点难点:

分数四则混合运算的顺序及理解整数运算律在分数运算中同样适用。

课前准备:

教学过程:

一、布置要求,引导预学

(1)做书上第80页“练习十五”第1题

(2)说出下列各题的运算顺序。

199-68×2 38-[2.44×(8.5-5)]

(3)整数四则混合运算的顺序是什么?

a、一个算式里,如果只含有同一级运算,按照( )顺序进行计算;

b、一个算式里,如果含有两级运算,要先算( ),再算( );

c、一个算式里,如果有括号,要先算( ),再算( )。

二、预习反馈,诊断查学

课中进行预习反馈,教师根据学生的反映有针对性地调整教学。

三、目标引领,探究导学

(一)创设情境。

1、出示教科书第80页的例题图。提问:要求“两种中国结各做18个,一共用彩绳多少米?”这个问题,可以怎样列式?

要求学生自主列出综合算式,并尽可能列出不同的综合算式。

2、集体交流。教师根据学生的回答板书算式。

25 ×18+35 ×18 (25 +35 )×18

追问:列式时你是怎么想的?

3、指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)

(二)教学分数四则混合运算的运算顺序。

1、谈话:根据以上计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?

你会计算上面这两道式题吗?

学生分别计算,并指名板演。

2、提问:这两道式题的计算结果相等吗?运算顺序呢?第一道算式先算什么?第二道算式呢?

3、小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。

4、做“练一练”第1题。让学生先说出运算顺序再计算,然后交流、订正。

(三)教学把整数的运算律推广到分数。

1、引导:我们再来仔细观察例1的两种解法。比较一下,这两种解法之间有什么联系?哪一种方法比较简便?你有什么想法?

通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。

2、做“练一练”第2题。先让学生独立计算,再讨论分别应用了什么运算律或运算性质?

四、巩固练习,反馈练学

1、做练习十第1题。

让学生按要求直接写出得数,再集体订正。

2、做练习十第2题。

让学生独立计算,再选择一两题要求说说运算顺序。

3、做练习十第3题。

让学生独立计算,然后说说每道题分别应用了什么运算律或运算性质。

4、做练习十第4、5题。

学生独立解答后,指名说说解题思路。

五、课堂总结,拓展思学

这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?

板书设计:

分数四则混合运算

四则运算教案篇3

[设计说明]

一、借助情境,帮助学生很好地理解运算顺序的合理性

本单元教材的编排思想是借助具体情景,通过6个例题的教学,使学生掌握四则运算的运算法则,初步了解这一知识的生成过程,以及提高列综合算式解决实际问题的能力。这与以前的教材编排有很大的不同,改变了过去通过单纯解答混合运算试题以达到掌握、记忆运算顺序的设计意图,将混合运算赋予了生活中的现实意义,引导学生通过解答生活中的具体问题来理解体会混合运算顺序的合理性,从而达到在感悟、理解的基础上尝试概括总结,直至掌握运用。

因此在教学设计时我们对如何在现实情景中进行四则运算,如何把解决问题与掌握四则混合运算顺序有机地结合作为着力点进行了研究。旨在通过对解决问题的思路交流汇报,使学生理解算式所表达的意义,初步体会“先乘除后加减”的合理性运算法则,并注意由具体特例向一般混合运算推广,最后总结、概括出四则运算法则的一般规律。

二、在准确理解、把握教材的基础上创造性地使用教材

教材的例1例2是在学生已会计算的基础上总结概括同级运算的运算顺序;例3要使学生理解、掌握两级混合运算的运算顺序,并掌握加减两边可以同时计算的特例;例4是学习带小括号的混合运算顺序,并体会解决问题途径的多样性。经过认真分析研究,我们认为例1、例2的内容学生掌握起来比较容易,而例3的教学任务有些重,因此,我们根据实际情况将教学内容进行了调整,第一课时完成例1、例2的教学以及两步计算的二级混合运算顺序,第二课时完成“两边同时计算”的混合运算特例及例4的教学任务。这样教学不仅分散了例3的多个难点,同时能在第一课时中通过对比突出“先乘除、后加减”的教学重点,更能明确地帮助学生体会、理解运算顺序的合理性,而在第二课时的教学中也能有足够的精力去梳理解决问题的思路,并借助小括号的加入体会解决问题途径的多样性。

三、在学习活动中重视学法的指导和数学思维方法的渗透

第一课时我们重点引导学生通过观察、比较、分析,学会抓住事物的本质特征,从而发现、总结规律的科学思维方式,并进一步培养学生善于提出问题、积极寻求解决途径、并有意识地寻求依据来解释说明自己的思路的能力,在理解、掌握运算顺序的同时,促进学生数学思维的发展。

在第二课时中,我们有意识地增加了“数形结合”的思想。俗话说:授之以鱼,不如授之以渔。教师不仅要教给学生知识,更重要的是教给学生学习的方法。线段图是以线段的长短表示数量的大小,以线段之间的关系反映事物之间的数量关系。发挥着其他手段、方法不可替代的作用。低、中年级的学生在解决实际问题时,更需要借助线段图化抽象为具体,化隐蔽为直观,数形结合,形象地提示题中的数量关系,启发、拓宽并优化学生的解题思路,增强判断的准确性,从而提高学生创造性地解决数学问题的能力。因此,这节课指导学生通过画线段图来理解题里的数量关系,尤其是例4的第二种方法,学生对于这种方法很难理解,但通过画线段图及进一步观察、分析,学生就能较好地理解为什么先求差,实现对解题方法的优化,进一步培养学生解决问题的能力,为学生后期的学习打下良好的基础。

第一课时

[教学内容]

?义务教育课程标准实验教科书·数学》四年级下册第一单元例1、例2以及例3的相关内容。

[教学目标]

1.通过探究、交流等学习活动,使学生理解“先乘除、后加减”的原因,引导学生发现并总结出同级运算和两级混合运算试题的运算顺序,并能正确进行运算。

2.培养学生列综合算式解决实际问题的能力,以及发展问题、分析、解决问题的能力。

3.引导学生感受数学与生活的紧密联系。

[教学重点]

引导学生发现并总结概括出没有括号的混合运算的运算顺序。

[教学难点]

帮助学生理解“先乘除、后加减”的原因。

[教学过程]

一、创设情境,导入新课

师:冬天你最喜欢什么运动?(生:滑雪、打雪仗……)这是济南新开业的滑雪场(课件出示滑雪场图片)。这节课我们就来了解有关滑雪场的情况。

二、结合情境,探究新知

(一)发现、总结同级运算的运算顺序

1.出示信息:滑雪场开业第一天上午有230人,中午有70人离去,又有150人到来。

师:根据信息你能提出什么数学问题?

生:下午有多少人?

学生列式解答并指名板演:

①230-70=160(人);

160+150=310(人)。

②230-70+150=310(人)。

汇报交流:请列分步算式和综合算式的学生分别说说解答思路。

引导学生分析比较:两者思路是相同的,只是第二位同学列出了一道加减混合的综合算式,这样写比较简单。

师:由于数目越来越大,直接写出最后得数容易出错,如果我们把第一步的计算结果记录下来就不容易算错了。

(教学脱式书写格式,略)

2.出示信息:开业前三天共接待900人,照这样计算,5天预计接待多少人?

师:你能根据信息列出综合算式并脱式计算吗?

指名板演:900÷3×5

=300×5

=1500(人)

师:请你给大家说说先算什么,后算什么,为什么这样算。

生:我先算900÷3,再用它们的商乘5,因为必须先求出平均每天接待的人数才能算出5天的人数。

师:也就是说,这道乘除混合的算式你是按照从左到右的顺序做的。谁能说出15-8+11和40×3÷60的运算顺序?

生答略。

3.总结运算顺序。

师:观察这几道算式,你有什么发现?

生:我发现第1、3题中只有加、减法,第2、4题中只有乘除法。

生:我发现它们都是从左往右计算的。

师:在一道算式中,只有加减或者只有乘除,一般情况下按照从左到右的顺序做。

(二)理解、总结两级混合运算的运算顺序

1.出示信息:

刚才有同学说想知道滑雪场的门票是多少钱,前两天我有两个朋友也去了滑雪场,看大屏幕:成人票一张60元,付给售票员200元买两张票,应找回多少钱?

(学生列式计算,指名板演。)

200-60×2

=200-120

=80(元)

师:前几道题我们都是按从左往右的顺序计算的,为什么这道题先算后面的乘法呢?

生:因为我们必须先知道买两张票花了多少钱,才能再算出找回多少钱。

生:要想求出找回多少钱,必须在总钱数里去掉两张票的价钱,而不是减去一张票的价钱,所以要先算后边的乘法。

师:也就是说,这道题是求从200里减去60×2的积,差是多少,所以要先算乘法,再算减法,对吗?

谁能说出53+7×8应先算什么再算什么?

生答略。

2.出示信息:

现在已经放假了,听说滑雪场对儿童还有优惠活动:成人票60元,儿童票半价。

师:如果你和妈妈一起去,一共花多少钱呢?请列式解答。

指名板演:①60÷2+60 ②60+60÷2

=30+60 =60+30

=90(元) =90(元)

第一位同学汇报思路:我是先算出儿童票多少钱,再加上成人票60元,求出一共花了多少元,所以我先算除法再算加法。

第二位同学汇报思路:我跟她的想法一样,只是把60放到了前边,因为在加法中两个加数可以交换位置,但还是先算除法再算加法。

师:也就是说在这个算式中,60必须与60÷2的商相加,因此不管这个除法放在哪儿,都要先算除法再算加法。

3.总结规律。

师:仔细观察第二组算式,它们是按什么顺序计算的?这些算式与第一组相比有什么特点?

生:第一组的每道算式中只有加减法或只有乘除法,而第二组的算式中加、减、乘、除法是混在一起的。

生:第二组算式都是先算乘法或除法,再算加法或减法。

教师根据学生的汇报进行总结:在一道算式中,既有乘除法,又有加减法,一般情况下先乘除后加减。

三、反馈练习,巩固提高

直接说出先算什么:

①27÷3×7 ; ④54÷6÷9;

②45+8-23; ⑤28+120×8;

③203-135÷9; ⑥35+24+12。

这些题哪些是从左到右算的?剩下的两道题是按什么顺序做的?

四、全课总结

师:今天我们学习了混合运算(板书课题),重点研究了混合运算的运算顺序,你有什么收获和体会?

(设计指导:常网)

第二课时

[教学内容]

?义务教育课程标准实验教科书·数学》四年级下册第一单元例3、例4。

[教学目标]

1.引导学生理解、掌握在没有括号的算式里,两头乘除、中间加减类型题的算法,体会小括号的作用,进一步总结完善四则运算的运算顺序。

2.借助线段图,提高学生分析问题、解决问题的能力。

3.在解决问题的过程中,培养学生思维的敏捷性和灵活性。

[教学重点、难点]

理解“两头乘除、中间加减”类型题目的计算方法,体会小括号的作用。

[教学过程]

一、复习引入,创设情境

师:上节课我们学习了有关混合运算的知识,谁还记得,混合运算都有哪些运算规则?

根据学生回答,教师板书:

师:现在是什么季节?冬天大家最喜欢干什么?堆雪人、打雪仗、滑雪一定非常有趣,如果我们组织这样的活动同学们喜欢参加吗?

为了更好地组织开展活动,我们要了解一下每个年级活动的项目、参加的人数以及分组的情况。

二、结合情境,探究新知

(一)理解、掌握“两边乘除、中间加减”类型题目的计算方法

1.出示信息;一、二年级组织堆雪人比赛,一年级有3组参加,每组8人,二年级由2组参加,每组10人,两个年级共有多少人参加比赛?

师:这个问题你们会解决吗?请你用画图的方法表示出你的想法,列出算式,和小组的同学交流一下。

(学生小组讨论)

2.汇报交流。

第一组:

8×3+10×2

生:我们通过画线段图可以清楚地看出,要求两个年级一共多少人,必须先求出一、二年级分别有多少人。

生:一年级每组8人,有3组,二年级每组10人有2组,所以要求两个年级一共多少人列式为:8×3+10×2。

师:大家同意吗?

生齐:同意,我们也是这样列式的。

师:同学们真不简单,你们列出的是一个三步计算的综合算式!可这样的算式我们以前没有解答过,你们会算吗?在练习本上试着计算一下。

指两名学生板书:

①8×3+10×2 ②8×3+10×2

=24+10×2 =24+20

=24+20 =44(人)

=44(人)

师:请同学们观察、比较一下,在小组里谈谈你们的看法。

生:我们组觉得第一位同学做的对,即符合题的意思,也符合运算顺序,每一步都是先算乘、后算加,第二位同学两个乘法一起算,不合适。

生:我们觉得第二位同学的做法是对的,先同时求出一、二年级分别有多少人,再求两个年级一共多少人,同样既符合题意也符合“先乘除、后加减”的运算规则啊。

生:我们也觉得第二种做法是正确的,它不仅符合题目的意思和运算规则,结果正确,写起来还简便,我们觉得第二种方法是对的。

师:现在大家能不能达成共识?第二种方法行不行?

生齐:行!

师:我也赞同大家的意见,两边的乘法可以同时计算。

3.小练习。

(1)板书:15÷3+16÷26×4-18÷9

师:这两道题表示什么?在小组里说说。

(交流)

生:第一题表示15除以3的商加16除以2的商得多少。

生:表示2个商加起来是多少。

生:第二个算式表示4个6的积减去18除以9的商得多少。

师:大家说得很好,应该怎样算呢?试着做做。

(生独立计算,集体反馈,略)

(2)指名口答运算顺序:

9×3-25÷5;60÷5-3×3;75+5×8+23。

师:仔细观察这几个算式,你有什么发现?

生:只有两边是乘除法、中间是加减法的算式,我们才可以将两边乘除法同时计算。

(二)理解、掌握有小括号的混合运算的计算规则

1.出示信息:三、四年级同学准备举行扔雪球比赛,三年级的有24人参加,四年级有36人参加,如果每6人分一组,四年级比三年级多分几组?

师:这个问题你会解决吗?请你先画图,再列式解答。

2.反馈学生作业。

36÷6-24÷6

=6-4

=2(组)

师:他的想法大家能看懂吗?要求四年级比三年级多分几组?必须先求什么?(生答略)

师:仔细看看分析图,这道题你还有别的解法吗?

生:还可以这样算:(36-24)÷6。

师:能给大家说说你是怎么想的吗?

生:从图上可以看出,四年级的前半部分跟三年级的人数一样多,所以我们可以不用管,只看看四年级比三年级多几人,多出的人数中有几个6就行了。

师:他的想法对吗?大家有什么问题吗?

生:为什么要加小括号?

生:我们必须先求出四年级比三年级多几人,才能再除以6,所以要加小括号。

师:如果不加小括号36-24÷6行不行?

生:这样不行,这样就不符合我们刚才的想法了,只有加上括号改变它的运算顺序才能算出四年级比三年级多几人,也就是先求差。

师:我们在低年级就知道加小括号能改变运算顺序。(板书:3+2×4)这道题应先算什么?要想先算加法怎么办?(红笔加上括号)

3.完善法则。

师:看看我们前边归纳的运算规则,只有这两条够吗?还需要补充什么吗?

生:应该加上“有括号的要先算括号里面的”。

生:前边两条也应该加上“在没有括号的算式里”。

(根据学生的回答完成板书)

三、练习(机动)

四、全课总结

师:我们在计算混合运算的试题时,都有哪些运算规则?通过这两节课的学习,大家有什么收获?

四则运算教案篇4

教学目标

1. 掌握没有括号的加、减混合运算式题含有同一级运算的运算顺序。

2. 能在问题情境中提出问题并解决问题。

3. 经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,养成认真审题、独立思考等学习习惯。

教学重点

归纳只有加、减法的混合运算式题的运算顺序。

教学过程

一、创设情境 生成问题

情境导入

1. 用多媒体展示主题图,说说图中描绘的是哪儿?人们都在做什么?

2. 根据图中的信息,你能提出哪些数学问题?怎么解决?

二、 探索交流 解决问题

1. 只有加、减法的运算顺序学习

多媒体展示“滑冰场”情境图和例1:滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?

师:求“现在有多少人在滑冰?”,该怎样列式计算?

(学生列式计算并在小组中交流自己的解题方法)

全班交流

方法1:分步列式

72-44=28(人)

28+85=113(人)

综合算式:72-44+85=113(人)

说说是怎么想的?每一步是表示什么意义?

方法2:同学们想一想还有其它的方法吗?

72+85=157(人)

157-44=113(人)

综合算式:72+85-44=113(人)

师:谁能说说,在这两个综合算式中,应该先算什么?表示什么意思,再算什么?表示什么意思?

学生讨论,小结得出:在没有括号的算式里,如果只有加、减法运算,要从左往右依次计算。

三、知识巩固

1、 水果店运来95千克苹果,卖出56千克后,又运来70千克,水果店现在有苹果多少千克?

解法一:

解法二:

2、 计算:

79+58-24

79-58+24

四、技能大比拼

58+26-33+45-57

五、回顾整理 反思提升

师:归纳一下,今天所学的算式有什么特点?它们的运算顺序是怎样的? 师:对于今天的学习,你们感觉如何?

125-45-27 125+45+27

四则运算教案篇5

教学内容:

教科书第83页例2及“练一练”,练习十六第1-4题。

教学目标:

1.学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。

2.在运用已有知识和经验解决一些稍复杂的实际问题的过程中,发展思维,提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

教学重点:

学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。

教学对策:

借助画线段图和分析数量关系来寻找解决问题的方法,鼓励学生要积极交流自己的思考过程,真正理解数量关系后再列式解答。

教学准备:

教学光盘及补充练习

教学过程:

一、复习铺垫

1.口算下列各题。

4/15+7/15 1/23 5/9×3/5 2÷1/2 1/4÷4

18÷1/2 18×1/2 0÷2/5 14 1÷4/7

21×3/7 10/7÷15 21÷3/7 1/2×1/3 5/6×36

进行口算,学生将得数写本子上,时间到后统计完成的题目数量及正确率。

2.口答。

(1)五(1)班中男生人数占全班人数的2/5,那么女生人数占全班的( )。

(2)一本故事书已看了2/7,还剩全书的( )。

(3)一根绳子长12米,剪去了1/4,剪去了( )米。

(4)一盒牛奶900毫升,喝去了1/3,喝去了( )毫升。

指名学生口答得数并分析每一题的数量关系。

二、学习新知

1.教学例2。

出示例题:岭南小学六年级有45个同学参加学校运动会,其中男运动员占5/9。女运动员有多少人?

(1)学生读题,提问:从题中你知道了什么?要我们解决什么问题?指名学生回答题中的已知条件和所求问题。

(2)提问:根据“男运动员占5/9”这个信息你还知道了什么?(把45个同学看作单位“1”、女运动员占总人数的4/9)为了清楚地表示男、女运动员和总人数之间的关系,我们可以借助画线段图来分析。你能在线段图上分别表示出男、女运动员所占的部分吗?

(3)教师在黑板上画出完整的线段图。

(4)提问:要求女运动员有多少人,可以先算什么?用你想到的方法列式算一算。(学生独立思考后列式计算)

(5)探讨方法。

指名学生交流自己的解题方法:

方法一:根据男运动员占5/9,先算出男运动员的人数,再算女运动员人数,列式:45-45×5/9

方法二:根据男运动员占5/9可以知道女运动员占总人数的4/9,最后求女运动员人数。列式为:45×(19)。

追问:45×5/9表示什么?19又表示什么?

小结:刚才两种不同的解题思路中,都把哪个数量看做单位“1”,第一种方法先求出男运动员人数,再用总人数减去男运动员人数求出女运动员人数;而第二种方法先求出女运动员占总人数的几分之几,再用乘法求出女运动员的人数。不管哪种方法都要两步计算才能解决这个问题,题目比以前复杂一些,所以今天我们研究的是稍复杂的分数乘法的实际问题。(板书课题)

2.“练一练”。

(1)学生读题后可以先找出关键句分析数量关系,然后列式解答。

(2)先同桌之间说说解题思路,再请几位学生全班交流,教师及时评价。

三、巩固练习

用你喜欢的方法解决下列各题。

1.某粮库原来有大米1500袋,运走3/5,还剩多少袋?

2.少先队员一共采集标本168件,其中5/8是植物标本,其余是昆虫标本。昆虫标本有多少件?

3.张大伯有一块长方形菜地,长30米,宽20米。这块地的7/12种茄子,其余种番茄。番茄种了多少平方米?

学生认真读题后独立列式解答,讲评时重点让学生说说解题思路。

4.(1)一桶油10千克,用去4/5,用去多少千克/

(2)一桶油10千克,用去4/5,还剩多少千克?

(3)一桶油10千克,用去4/5千克,还剩多少千克?

学生独立思考后解答,讲评时将这三小题进行比较,比较已知条件和所求问题以及解题思路。

四、全课总结

通过这节课的学习,你有什么收获?在解题时要注意什么?

五、布置作业

课内作业:完成练习十六第1-4题。

四则运算教案篇6

一、教学目标

1.结合具体情境,理解加、减、乘、除四则运算的意义,掌握四则运算中各部分间的关系,对四则运算知识进行较系统的概括和总结。

2.认识中括号,掌握四则混合运算的顺序,能进行简单的四则混合运算。

3.让学生经历解决实际问题的过程,学会用四则混合运算知识解决一些实际问题,感受解决问题的一些策略和方法。

4.通过数学学习,提高抽象概括能力,养成认真审题、独立思考等良好的学习习惯。

二、教学内容

加、减法的意义和各部分间的关系

四则运算 乘、除法的意义和各部分间的关系(含有关0的运算)

四则混合运算的顺序

解决问题

三、编排特点

1.增加了四则运算的意义和各部分间的关系。

2.突出对知识的梳理和总结。

四、教学重、难点

教学重点:1.掌握三步运算的运算顺序并能正确计算。

2.会解答用两、三步计算解决的实际问题。

教学难点:1.理解“0”不能做除数的道理。 2.解决实际问题。

五、课时安排

本单元共安排5课时(仅供参考,老师们可依据学生情况进行调整)

六、教学建议

1.要注意在实际问题中进行数量关系分析和解答思路的教学。由于本单元是将解决问题和四则混合运算有机结合起来编排的,因此,在教学中每节课都要注意在实际问题中进行数量关系分析和解答思路的教学,这是本单元教学的重点和难点之一。

(1)要注意加强审题和对数量关系的分析。

●有哪些数量?这些数量分别表示什么?

● 哪两个数量之间有关系,有什么关系?

(2)帮助学生掌握解决问题的方法与策略。根据问题选择分析方法:

● 从条件入手● 从问题入手● 从关键句入手

(3)帮助学生掌握思维的外化形式。

●示意图 ● 线段图 ● 枝形图

(4)在训练课中要注意补充相应的习题进行训练。因为关于整数的三步的实际问题在本册中已达到最难的程度,进入了收尾。

2.将探求解题思路与理解运算顺序有机结合起来。在解决问题的过程中,使学生掌握解决问题的策略和方法,同时体会运算顺序规定的必要性。因此,教学中要把握好要求,即在解决问题时可要求学生列综合算式来解决问题,然后在综合算式中明确先求什么,再求什么,与运算顺序结合起来。但老师要明确,在解决问题中并不要求学生一定列综合算式解答。

3.教学中为学生提供自主探索与合作交流的情境和空间。针对每个例题的教学,要充分利用教材提供的生活情境,或现实生活创设现实情境,(知识点要保留)放手让学生独立思考,自主探索,并在合作交流中研讨。在每层的教学中要注意遵循研讨的六环节。

4.关于计算方面的训练。

(1)加强口算的训练。

(2)培养学生认真审题的好习惯。

一审运算符号。

二审数据特点。

三定计算方法。

(3)要培养学生认真书写的好习惯。

(4)教给学生抄题、抄数的方法。

(5)做题时速度适中,一步一回头。

(6)关于作业的批改问题。

(7)练习要经常化。

(8)坚持弃九验算法。

学情分析:

第一课时(例1)

教学目标:

1.从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。

2.初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。

3.培养学生发现数学知识和运用数学知识解决问题的能力。

教学重、难点:

教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。

教学难点:从实例中探究加、减法的互逆关系。

教学准备:课件

教学过程

一、理解加、减法的意义

1.理解加法的意义。

出示例1(1)一列火车从西宁经过格尔木开往拉萨。西宁到格尔木的铁路长814 km,格尔木到拉萨的铁路长1142 km。西宁到拉萨的铁路长多少千米?

(1)问:根据这道题你收集到了哪些信息? (让学生尝试用线段图表示)

(2)请学生根据线段图写出加法算式。

814+1142=1956 或 1142+814=1956

师:为什么用加法呢?

那怎样的运算叫做加法?(小组讨论)

(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)

(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)

(4)说明加法各部分名称。

2.理解减法的意义

能不能试着把这道加法应用题改编成减法应用题呢?

(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:

师:根据线段图写出两道减法算式,并说说这样列式的理由。

1956-814=1142 或 1956-1142=814

(2)问:怎样的运算是减法?(小组讨论)

(根据这两个算式,结合已有的知识讨论并试着用语言表示)

(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)说明减法各部分名称。

二、探究、理解加法和减法之间的关系。

1.问:上面的这些算式,你觉得它们之间有什么联系?观察上述四道算式中数字位置间关系,思考加法和减法之间的关系。然后以小组的形式进行讨论。

(小组讨论。个别汇报)

2.根据学生的汇报,出示:

加数 + 加数 = 和 被减数 - 减数 = 差

3.师归纳并小结:减法是加法的逆运算。(板书)

4.加法各部分之间的关系。

出示:814+1142=1956

814=1956-1142

1142=1956-814

问:观察算式,你能得到什么结论?

和=加数+加数 加数=和-另一个加数

5.减法各部分之间的关系。

出示:800-350=450

800=450+350

350=800-450

问:通过观察这组算式,你能得出减法各部分的关系吗?

观察这组算式讨论归纳得:

被减数=差+减数 减数=被减数-差

三、练习

1.“做一做” 2.练习一 1题

四、总结

师:谁来说说我们这节课学习了些什么?你知道了什么呢?圃

板书 加、减法的意义和各部分间的关系

加数 + 加数 = 和 被减数 - 减数 = 差

和 - 加数 = 加数 减数 被减数 - 差

被减数 = 减数 + 差

作业布置

a层:练习一2、3、4、5 b层:练习一2、4、5 c层:练习一2、4

第二课时(例2、例3)

教学目标:

1.理解乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用,知道关于0的运算应该注意的问题。

2.学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。

3.在分析过程中,培养学生的推理、概括能力。

4.培养学生养成良好的验算习惯。

教学重、难点:

教学重点:掌握乘、除法各部分间的关系,并对乘、除法进行验算。

教学难点:理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答,理解0不能做除数及原因。。

教学准备:课件

教学过程

一、谈话导入。

我们已经做过大量的整数乘除法计算和应用题的练习,对于乘除法知识也有了初步的了解.这里我们要在原有的知识基础上,对乘除法的意义加以概括,使同学们能运用这些知识解决实际问题.(板书课题:乘除法的意义)

二、理解乘除法的意义。

1.理解乘法的意义。

出示例1(1)

用加法算:3+3+3+3=12

用乘法算:3×4=12

师:为什么用乘法呢?

那怎样的运算叫做乘法?(小组讨论)

(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是乘法。)

小结:求几个相同加数的和的简便运算,叫做乘法。(出示乘法的意义)说明乘法各部分名称。

2.理解除法的意义。

能不能试着把这道乘法应用题改编成除法应用题呢?

出示例2(2)(3)

(1)问:与第(1)题相比,第(2)、(3)题分别是已知什么?求什么?怎样算?

列式计算:12÷3=4 12÷4=3

(2)问:怎样的运算是除法?(小组讨论)

(根据这两个算式,结合已有的知识讨论并试着用语言表示)

(3)小结:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。说明除法各部分名称。

(4)教学除法是乘法的逆运算。

引导学生观察:第②、③与①的已知条件和问题有什么变化?

明确:在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算。

3.乘除法各部分间的关系。

(1)引导学生根据上面第①组算式总结乘法各部分间的关系。

(2)教师引导学生进行概括:积=因数×因数一个因数=积÷另一个因数。

(3)引导学生观察第②组算式,自己总结出除法各部分间的关系。

商=被除数÷除数 除数=被除数÷商 被除数=商×除数

(4)想一想:在有余数的除法里,被除数与商、除数和余数之间有什么关系?

(5)练习:做一做

三、0的运算

1.计算:6+0、6-0、6×0、6÷0

2.引发学生讨论:6÷0=?为什么?

讨论:0不能作除数。6÷0不可能得到商,因为找不到一个数同0相乘得到6。

讨论:0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。

小结:归纳所有0的运算

一个数加上0,还得原数。被减数等于减数,差是0。0除以一个非0的数,还得0。一个数和0相乘,仍得0。

3.练习二7题

四、课堂小结

本节课你有哪些收获?你最欣赏谁?

板书

加、减法的意义和各部分间的关系

积=因数×因数 商=被除数÷除数

一个因数=积÷另一个因数 除数=被除数÷商

被除数=商×除数

0不能作除数

作业布置

a层:练习二2、4、9、11、12

b层:练习二2、4、9、11

c层:练习二2、4、9

第三课时(例4)

教学目标:

1.通过学习,学生理解带中括号的四则混合运算的运算顺序,并能熟练习的进行运算。

2.培养学生良好的学习习惯。

教学重、难点:理解带中括号的四则混合运算的运算顺序。

教学准备:课件

教学过程

一、复习引入:

1.一个算式里只有加减法或只有乘除法,按怎样的顺序计算?举例

2.一个算式里有加减法,又有乘除法,按怎样的顺序计算?举例

3.一个算式里有括号,按怎样的顺序计算?举例

4.今天我们学习“四则运算”,到底什么是四则运算呢?

概括:加法、减法、乘法和除法统称四则运算。我们以前学习的混合运算就是四则运算。

二、新知探究

出示例4:96÷12+4×2

1.说说运算顺序。

2.如果在96÷12+4×2的基础上加上小括号,变成96÷(12+4)×2,运算顺序怎样?(先算小括号里面的)

96÷(12+4)×2

=96÷16×2

=6×2

=12

3.如果在96÷(12+4)× 2的基础上加上中括号“[ ]”,变成另一个算式96÷[(12+4)× 2],运算顺序怎样?(说明:一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的)

96÷[(12+4)× 2]

=96÷ [16×2]

=96÷ 32

=3

4.阅读“你知道吗?”

5.总结:

运算顺序: (1)在没有括号的算式里,如果只有加、减法或者只乘、 除法,都要从左往右按顺序计算。 (2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。 (3)算式里有括号的,要先算括号里面的。

三、巩固练习

1.做一做

2.选择题:

(1)47与33的和,除以36与16的差,商是多少?正确列式是( )

a、47+33÷36-16 b、(47+33)÷(36-16) c、(36-16)÷(47+33)

(2)750减去25的差,去乘20加上13的和,积是多少?正确列式是( )

a、(750-25)×(20+13) b、(20+13)×(750-25)c、750-25×20+13

四、课堂总结

本节课你有哪些收获?你最欣赏谁?

板书 四则运算

先乘除,后加减,遇到括号先。

作业布置

a层:练习三1、2、3、6、7 b层:练习三1、2、3、6 c层:练习三1、2、3

第四课时(例5)