一个有意义的教案应该具备明确的教学目标,能够激发学生的学习兴趣,提供合适的学习资源和活动,无法实施的教案无法帮助教师更好地调整教学策略和方法,适应学生的学习需求,365文档网小编今天就为您带来了长方体体积教案5篇,相信一定会对你有所帮助。
长方体体积教案篇1
教学目标
1、结合具体情况和实践活动,操索并掌握长方体,正方体体积计算方法,能正确计算长方体,正方体的体积;
2、在观察、操作、操索的过程中,提高动手操作能力,进一步发展空间观念。
教学重点
掌握长方体,正方体体积的计算方法。
教学难点
正确计算长方体,正方体的体积。
教具准备
长方体,正方体模型。
教师指导与教学过程
学生学习活动过程
设计意图
一、导入:
1、出示长方体
提问:长方形的面积和长和宽有关,长方体的体积可能与什么有关?
二、做一做
1、用相同的小正方体摆出4个不同的长方体,记录它们的长、宽、高并完成下表()
引发学生进行思考,
学生通过观察、分析,发现长方体体积与长、宽高的关系。
2、学生进行思考。
○1学生体会“长、宽相高的时候,越高体积会怎样?”
○2体会“长、高相等时候,越宽,体积会怎样?”
○3体会“宽、高相等的时候,越长,体积会有什么变化?”
通过实物,引出深题,激发学生操索的兴趣。提出问题引发学生的思考。
让学生通过几次活动,比较,感知长方体二体积与它的长、宽、高有关系,为进一步自己操索长方体体积的计算,打下良好的基矗
教师指导与教学过程
学生学习活动过程
设计意图
2、说一说:
学生反馈自己的数据,教师带学生逐一对数据进行分析
三、说一说
1、引导学生分板数据
2、得出长方体体积公式
长方体的体积=长×宽×高
v=a×b×h
四、算一算
1、测量自己的铅笔盒,找出长、宽、高
2、计算铅盒的体积
引导学生观察数据,观察长方体的体积,与它的长、宽、高有什么关系?
3、集体进行反馈,说一说
自己的计算方法。
通过让学生对记下的有关数据,通过观察,分析,发现长方体体积与长、宽、高的关系,归纳得出长方体体积的计算方法。
板书设计:
长方体体积
长方体体积=长×宽×高
v=a·b·h
底面积×高
正方体体积=棱长×棱长×棱长
v=s·h
长方体体积教案篇2
教学要求
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点
长方体、正方体体积公式的推导。
教学用具
教师准备:一大块橡皮泥; 1立方厘米的正方体木块24块;投影仪。
学生准备:1 立方厘米的正方体12个
教学过程
一、创设情境
填空:
1、 叫做物体的体积。
2、常用的体积单位有: 。
3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习:长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
4 3 1
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的'体积=长×宽×高。
用字母表示:v = a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习:正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:v=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
长方体体积教案篇3
一、活动目标:
认识长方体,知道它由6个面组成(2个正方形,4个长方形)。
通过动手操作活动,发现正方体与长方体的不同,并能区分。
喜欢动手制作几何体并保持桌面清洁。
二、活动准备:
教具:一张放大的操作卡片。
学具:人手一张操作卡片,剪刀,胶水。
三、活动过程:
集体活动。
观察操作材料。图上有什么?(正方形,长方形),有几个?(2个正方形,4个长方形),一共是几个?(6个),2个正方形和4个长方形又能做成什么呢?
操作材料。
介绍制作方法。先把图形沿黑线剪下,把虚线向上折,最后用透明胶粘住。
介绍形体名称,区分正方体与长方体的异同。
做出来的像什么?(积木),手指长方体的一面:这叫什么?(面),数一数它有几个面?(6个),6个面一样吗?(不一样),你知道这叫什么吗?(长方体),6个一样大小的正方体围成的图形叫什么?(正方体),2个正方体和4个长方体围成的图形叫什么?(长方体)评价活动寻找教师中类似长方体的物品。请你们找一找、想一想教室里还有哪些东西是长方体呀。
四、活动反思:
孩子对长方体都认识,把他们堆在一起,叫他们数孩子就数不清。我想:还是要摆出实物图,让孩子理解,这样效果会好一些。
长方体体积教案篇4
目标
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
重点
理解底面积。
教学道具
仪器
教具
投影仪
教学内容和过程
一、创设情境
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh
三、巩固练习
1.做第20页的“练一练”。学生独立做后,学生讲评。
2.补充:一段长方体方铜,长1.2米,横截面是一个边长1厘米的正方形。这段方铜的体积是多少立方厘米?
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂
学生今天学习的内容
五、课后练习
做练习三的第11、12、13题。
长方体和正方体统一的体积公式
长方体的体积=底面积×高
正方体的体积=底面积×棱长
长(正)方体的体积=底面积×高,
用字母表示:v=sh
长方体体积教案篇5
教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: v=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用v表体积,a表示棱长
v=a·a·a或者v=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
① ( ) 2.判断正误并说明理由.
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2。7千克,这块石料重多少千克?
六、板书设计.教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的'体积
二、学习新课.
(一)长方体的体积
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: v=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用v表体积,a表示棱长
v=a·a·a或者v=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
① 2.判断正误并说明理由.
③一个正方体棱长4分米,它的体积是: (立方分米)
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2。7千克,这块石料重多少千克?
六、板书设计.