商的近似数教案7篇

时间:2023-07-08 作者:Gourmand

作为教师在写教案时一定要对课程内容进行一个全面梳理,工作多年,相信教师一定都了解教案的正确书写方式,下面是365文档网小编为您分享的商的近似数教案7篇,感谢您的参阅。

商的近似数教案7篇

商的近似数教案篇1

教材分析

“准确数和近似数”是义务教育课程标准实验教科书,浙教版七年册第二章的内容。教材通过一则科技报道引入准确数和近似数的概念,在学生已有的运算能力的基础上,给出近似数的精确度的两种表示方式,及近似值的取法。准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。

学生分析

学生往往存在着一些生活经验,这些生活经验是学生学习的基础,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的基础上,明确近似数的角度有两种表示方式以及学会近似值的取法。教学中要及时了解学生的认知程度,以便调整教学。

教学目标

通过实例经历近似数和准确数概念的产生过程。

了解近似数的精确度的两种表示方式。

能说出由四舍五入得到的有理数的精确位数和有效数字。

会根据预定精确度取近似值。

教学重点

近似数的两种表示方式及近似值的取法

教学难点

近似数所表示范围及有效数字如何表示近似数的精确度

教辅工具

投影仪、卷尺、“神舟五号飞船”图片、投影片6张

教学设计思路

本节课首先从学生熟悉的生活情境出发引入数学概念。通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习巩固,让学生很自然地接受这一部分知识。

教学流程

一、实践操作,引入课题

问:我想知道我们教室里有多少张课桌?黑板长为多少?

20xx年我国人口总数为多少?你们能帮老师解答吗?

(学生分小组进行合作操作、讨论)

[设计说明:通过学生亲自操作,引起学生的兴趣]

问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的?

(学生回答)

板书:像这样与实际完全符合的数称为准确数

像这样与实际接近的数称为近似数

通过测量或估计得到的都是近似数

板书课题:准确数和近似数

[设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]

二、导入新知

师:21世纪进入太空是很多人的梦想,同学们有想过吗?

(学生开心的各抒己见)

展示:“神舟五号飞船”图片

投影片a:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。

[设计说明:跟时尚接轨活跃课堂气氛,加深对概念的理解]

问:上面叙术中的各数,哪些是准确数?哪些是近似数?并说明你的理由。

(只要学生根据准确数和近似数的概念和自身的经验说出理由,均可以认为正确)

投影片b:(快速口答)下列叙述中的各数,哪些是准确数?哪些是近似数?

(1)月球与地球之间的平均距离大约是38万公里

(2)某本书的定价是4.50元

(3)小明身高为1.57米

(4)美国一家猫粮制作公司称:“在美国共有8500万只猫,22%的猫主人都选择猫爱看的频道”。

[设计说明:通过练习,加以巩固]

师:生活中用到近似数的情况很多,有时是因为客观条件无法或难以得到精确数据,如:“20xx年我国人口总数约为12.9533亿”,有时是实际问题无需得到精确数据,如“校长在会上说,这次学校包场看电影,买票大约需2500元”

三、展开过程,师生互动

对近似数,我们常需知道它的精确度,一个近似数的精确度通常有两种表示方式:

板书:1、一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位

如:身高1.57米是千分位数字四舍五入到百分位的结果,它精确到百分位(或精确到0.01)

近似数38万是千位数字四舍五入到万位的结果,它精确到万位

问:身高1.57米表示小明实际身高在什么范围内呢?

(学生思考、讨论,教师给予指导)

近似数38万表示的范围为 ?

(学生举手回答,教师鼓励,每位同学都发表自己的见解,最后指出正确答案)

投影片c:例1、下列由四舍五入法得到的近似数各精确到哪一位?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

(学生起立回答,教师和其余学生一起进行评判)

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的精确位数]

注:①以百、千、万、十万、百万等做单位的近似数的精确位数

②小数点后面的零

板书:2、用有效数字的个数来表述一个近似数的精确度,由四舍五入得到的近似数从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字。

如:1.57有 3个有效数字:1、5、7

38万 有2个有效数字:3、8

0.03070 有4个有效数字:3、0、7、0

注:近似数中越在左边的数字就越重要,有效数字越多,精确度越大

投影片d:例2、(口答)例1中各数有几个有效数字?分别是什么?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的有效数字及个数]

四、知识应用

投影片e:例3、用四舍五入法,按括号内的要求对下列各数取近似值

(1)0.33448(精确到千分位)

(2)64.8(精确到个位)

(3)1.5952(精确到0.01)

(4)0.05069(保留2个有效数字)

(5)84960(保留3个有效数字)

(学生练习上独立完成,教师巡视进行辅导对于(5)教师不急于指出,先让学生思考,发现问题提出来,如没有学生提出,教师可直接指出)

[设计说明:让学生学会如何根据预定精确度取近似值]

注:按预定要求取近似值时,不要遗漏小数点后面的零,对较大数取近似值最好用科学记数法表示

投影片f:例4、(1)计算:-22×11÷7(结果保留4个有效数字)

(2)一根木棒长4.4米,均匀截成6段,每段长多少米?(精确到0.01米)

[设计说明:这里安排练习,使学生体会到数学知识来源于实际,又应用于实际问题中]

五、小结:引导学生进行总结

六、作业:

教材p57课内练习、p58作业题a组、b组、c组

商的近似数教案篇2

教学内容:

教材p32例6及练习八第1、2、3、8题。

教学目标:

1.知识与技能:能理解商的近似数的意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

教学重点:

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

教学难点:

根据题意正确求出商的近似数。

教学方法:

注重新旧知识的迁移,引导学生自主学习、总结。

教学准备:

多媒体。

教学过程:

一、复习导入

复习旧知:(出示如下题目)

1.用“四舍五入”法将下面的数改写成一位小数。

8.7693.45212.7118.64

2.计算下面各题,得数保留两位小数。

2.43×4.67 12.15×3.41

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

二、互动新授

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12

学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

商的近似数

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

商的近似数教案篇3

教学内容:

教科书第14-15页例5、例6,“做一做”及练习二第3-5、7-8题。

教学目的:

1.会将整万的数改成用“万”作单位的数。

2.会用“四舍五入”法省略亿以内数万后面的尾数,求出它的近似数。

3.引导学生观察、体验数学与生活的密切联系,让学生体会数学知识来源于生活,服务于生活,培养学生主动探究的精神和用数学的意识。

教学重点、难点、关键:

1.重点:能把整万的数改写用“万”作单位的数。

2.难点:能正确地省略万后面的尾数写出它的近似数。

3.关键:把生活中的某些镜头带到学生面前,由果到因,让学生体会“近似值”在社会生活中的实际应用。

教学过程:

一、教学把整万的数改写成用“万”作单位的数。

1.投影出示白细胞和红细胞的图片,介绍白细胞:能消灭病菌,清洁血液;红细胞:能输送氧气。一小滴血液含有:红细胞:5000000个,白细胞:10000个。

2.让学生把红细胞和白细胞的个数读出来。

①按照四位分级的方法把上面三个数表示成下面形式:

500000010000

②让学生读出二个数:五百万、一万。

③教师:读了这些数以后,你发现了什么?

④教师根据学生的读数过程作如下板书:

5000000=500万10000=1万

3.学生观察、比较等号右边与等号左边的数。

①同学们仔细观察一下,等号右边的数与等号左边的数有什么不同?

(等号右边的数省略了万位后面的尾数,等号左边的数没有省略万位后面的尾数。

②它们有哪些相同的地方?(等号两边的数大小完全相同)

4.学生小组讨论:

①请同学们想一想,怎样用“万”作单位表示整万的数?(用万作单位表示整万的数只需要去掉万位后面的四个“0”,并写上“万”字。)

②用万作单位表示数有什么好处?

(用万作单位表示数既简单又不容易写错,使人一看就知道数的大小。)

5.小结:为了读数和写数的方便,今后我们可以直接用“万”作单位表示整万数。

6.练习:

⑴让学生独立完成第14页“做一做”1、2题,师巡视。

⑵改写完后,抽一部分同学把完成的练习在展示台上展示出来,集体评价。

二、教学用“四舍五入”法求近似数。

1.导入:

有些较大的数,有时没有必要或者无法说出它的准确数。比如,重庆市开展万人长跑活动,参加的人数约15000人,这个15000人就是一个近似数。又比如北京申办2008年奥运会的经费是20000000(2千万)美元,折合人民币约为1亿6千万元,这个1亿6千万也只是一个大概数据。既然生活中用到近似数这么多,那我们就应重视近似数的学习,怎样求一个数的近似数呢?

我们已经学过用四舍五入法求一个数的近似数。

2.复习:

用什么方法省略4926和9375千位后面的尾数?两个数的省略方法有什么不同?(引导学生说出省略千位后面的尾数要根据百位上的数进行“四舍五入”的方法。)

师:如果把数扩大到比万大的数,还可以用同样的方法来求它的近似数吗?

3.教师出示例6

①让学生试做,同时指定一名学生在黑板上完成。

②集本订正,然后分组议一议:⑴在省略12756和1389000万位后面的尾数时,要根据哪一位上的数进行“四舍五入”?⑵在求近似数时,12756的千位上的数不满5,应该怎么办?1389000千位上的数比5大,该怎么办?⑶求出的近似数为什么不使用“等号”而要使用“约等号”?

③引导学生通过讨论,解决以上三个问题。要特别注意让学生搞清楚:因为是求一个数的近似数,不是准确数,所以要使用“约等号”。

④让学生完成第15页“做一做”的题目,然后抽学生说说是怎样想的?

4.小结:

①同学们,我们学习了把一个较大的数省略万位后面的尾数,求出近似数;我们还学习了把一个整万的数改写成用“万”作单位的数。这两方面内容在意义和方法上有什么相同的地方和不同的地方?

②学生分小组讨论,然后由每小组推荐一个代表汇报讨论结果,最后由教师总结:求近似数和改写数都要改变数的表现形式,但它们的实质是不同的,求近似数改变了原数的大小,而用“万”作单位只改变了数的表现形式,没有改变数的大小。

三、巩固练习

①完成练习二第3、5题。

订正时让学生说说改写成用“万”作单位的数和省略万后面的尾数求出近似数在方法上有什么不同。

②学生独立完成练习二第4题。

四、课堂小结

教师:同学们回忆一下,这节课我们都学了哪些知识?把一个数改写成用“万”作单位的数以及求一个数的近似数时要注意些什么?

学生小结后教师做概括性的总结和评价。

商的近似数教案篇4

教学目标

1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。

2、培养学生根据具体情况解决实际问题的能力。

教学重点

用“四舍五人法”截取积是小数的近似值的一般方法。

教学难点

根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。

教学工具

多媒体课件

教学过程

一、激发兴趣

1、口算

1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5

1-0.82、.3+0.74、1.25×8、0.25×0.4

2、用“四舍五入法”求出每个小数的近似数。(投影出示)

2.095、4.307、1.8642

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

(2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二、尝试

谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

2、读题,找出已知所求。

3、列式,板书:0.049×45。

4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。

5、引导学生观察、思考:

(1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

(2)保留一位小数,看哪一位?根据什么保留?

(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

6、专项练习(根据下面算式填空)

3.4×0.91=3.094积保留一位小数是(),保留两位小数是()。

7、计算下面各题。

0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)

三、运用

一千克白菜的'价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)

课后小结

谁来小结一下今天所学的内容?

课后习题

1、根据下面算式填空。

3.4×0.91=3.094

积保留一位小数是( )积保留两位小数是( )

2、两个因数的积保留两位小数的近似数是3.58,准确值(三位数)可能是下面哪个数?

3.059 3.578 3.574 3.583 3.585

3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。

板书

积的近似数

2.45×2.5≈6.13(元)

竖式

答:

商的近似数教案篇5

教学内容:新课程标准实验教科书 人教版五年级上册 第10页例6及后做一做、练习二1—3题。

教学目标

1.知识与技能:掌握用“四舍五入法”取积的近似数。

2.过程与方法:让学生应用迁移的方法来求积的近似数。

3.情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。

教学重点

学生能用“四舍五入法”取积的近似数。

教学难点

学生能根据实际需要正确求积的近似数。

教学过程:

一、复习.

1、口算:0.8×40.32×40.8×12.57.8×0.01

3.2×0.20.08×0.089.3×0.014.8-0.48

2、把下面各数精确到百分位。

0.256≈ 12.889≈ 40.00001≈

二、新授

1.教学教材第10页例题6.

(1)出示例题6:

(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?

(3)生尝试练习。

(4)抽生板演:0.049×45≈2.2(亿个)

0.049

× 45

245

196

2.205

(5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)

①为什么用乘法计算?(根据小数乘整数的意义:求0.049的45倍用乘法计算。)

②结果2.205保留一位小数约是2.2是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)

(6)小结:当我们求出的积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。

三、练习

1、完成第10页“做一做”。

生完成在练习本上,抽生板演,并说出四舍五入的方法。

2、课堂作业:第13页练习二1、2、3题。

3、拓展练习:王敏家的小汽车平均每千米耗油0.07升,她家距单位约15千米,王敏每月(按21天算)上、下班(每天按往返一次算)要消耗多少升汽油?如果汽油价格每升3.92元算,王敏家每月这一项要支出多少钱?(得数保留整数)

商的近似数教案篇6

教学目标:

1.结合生活中的例子,理解精确数和近似数的含义。

2.掌握用“四舍五入”的方法求一个数的近似数,学会用“四舍五入”的方法省略“万”或“亿”后面的尾数,求出它的近似数。

3.引导学生观察、体验数学与生活的密切联系,培养学生主动探究的精神和应用数学的意识。

教学重点:能正确判断生活中的近似数和精确数,会用“四舍五入”的方法求一个数的近似数。

教学难点:灵活运用“四舍五入”的方法求一个数的近似数。

教学准备:课件

教学过程:

一、谈话引入

师:我今年三十五岁了,度过了一万多个日日夜夜。

想一想:在老师介绍自己的这两个数字中,你认为哪个数字描述得更精确?为什么?

引导学生畅所欲言,在学生交流的过程中教师进行实时指导,引导学生得出:三十五岁更精确,一万多个日日夜夜是个近似(大概、大约)的数。

导入:今天这节课我们就一起来学习和近似数有关的知识。(板书课题)

二、交流共享

(一)认识近似数

1.课件出示教材第21页例题6情境图。

2.初步感知。

让学生读一读两个情境中的信息,联系情境中的内容想一想:如果让你把划线的四个数字分一分,你想怎样分?为什么?

学生独立思考后,教师组织交流。

3.加深理解。

(1)思考:你知道上面哪些数是近似数吗?

教师在学生思考、交流的基础上明确:220万和1902万是近似数;生活中一些事物的数量,有时不需要用精确的数表示,而只用一个与它比较接近的数来表示,这样的数是近似数。

(2)让学生结合具体例子说说生活中的近似数。

(二)求一个数的近似数

1.课件出示教材第21页例题7“20xx年某市人口情况统计表”。

让学生观察表格中的数据,并读出这几个数。

2.借助直线理解找一个数的近似数的方法。

(1)教师出示一条直线:

38万 39万

(2)在直线上描出表示男性与女性人数的点。

提问:表示男性与女性人数的点大约在直线的什么位置?分别把它们描出来。

学生尝试在教材的直线上进行描数。

教师投影学生完成的结果:

38万 384204 386685 39万

(3)观察直线,探究找近似数的方法。

提问:观察直线上384204和386685这两个数,它们各接近多少万?

学生独立思考后,小组交流。教师巡视,了解学生的交流情况。

组织全班交流。

鼓励学生各抒己见,学生可能会有以下两种思考方法:

方法一:384204在385000的左边,接近38万;386685在385000的右边,接近39万。

方法二:384204千位上是4,比385000小,接近38万;386685千万位上是6,比385000大,接近39万。

教师对以上两种方法都应给予肯定。

3.介绍“四舍五入”的方法。

(1)教师介绍用“四舍五入”的方法求一个数的近似数。

用“四舍五入”的方法求一个数的近似数,要把这个数按要求保留到某一位,并把它后面的尾数省略。尾数的最高位上的数如果是4或比4小,就把尾数的各位都改写成0;如果是5或比5大,要在尾数的前一位加1,再把尾数的各位改写成0。

(2)用“四舍五入”的方法求出男性和女性人数的近似数。

先让学生独立写,再组织汇报交流,交流时让学生说说是怎样运用“四舍五入”的方法来求它们的近似数的。

教师根据学生汇报板书:

384204≈380000

386685≈390000

4.完成教材第22页“试一试”。

(1)课件出示题目。

(2)让学生独立思考后,在小组内交流汇报。

(3)提问:怎样将一个数改写成用“万”或“亿”作单位的近似数?

学生交流讨论,教师归纳。

三、反馈完善

1.完成教材第22页“练一练”。

这道题是结合生活情境来区分精确数和近似数。其中,56785和1617是准确数,4600000000、2000000和3000000是近似数。

2.完成教材第24页“练习四”第5~10题。

学生独立完成后集体汇报。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

商的近似数教案篇7

教学目标:

1、通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。

2、掌握用“四舍五入”法截取商的近似数的一般方法。

3、在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。

教学重点:

掌握用“四舍五入”法截取商的近似数的一般方法。

教学难点:

理解求商的近似数与积的近似数的异同。

教学准备

有关的课件。

教学过程

一、复习引入:

1.按照要求写出表中小数的近似数。(ppt课件出示题目。)

保留整数保留一位小数保留两位小数保留三位小数

2.求出下面各题中积的近似值。(ppt课件出示题目。)

(1)得数保留一位小数:2.83×0.9;

(2)得数保留两位小数:1.07×0.56。

3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)

二、探究新知:

1.学习例6。

(1)出示例6题目信息。(ppt课件演示。)

(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)

(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或ppt课件演示。)

①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。

②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。

(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?

①学生独立完成。

②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或ppt课件演示。)

(5)教师组织学生交流讨论。

①通过上面的两次计算,想一想怎样求商的近似数?

②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或ppt课件演示。)

(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。

①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(ppt课件演示例6精确到“角”的计算过程。)

②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(ppt课件演示例6精确到“分”的计算过程。)

2.对比求商的近似数与求积的近似数的异同。

(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(ppt课件演示。)

(2)思考:求商的近似数与求积的近似数有什么相同和不同?(ppt课件演示。)

(3)引导学生交流、概括。(ppt课件演示。)

①相同点:都是按“四舍五入”法取近似数。

②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。

三、巩固应用:

1.基本练习。

完成教材第32页“做一做”。

①学生独立完成,教师巡视,适时指导。

②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。

2.提高练习。

判断对错。(对的在括号里打“adic;”,错的在括号里打“×”。)

(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )

(2)求商的近似数时,精确到百分位,就必须除到万分位。( )

(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )