分数的应用教案8篇

时间:2023-05-31 作者:pUssy

教案在拟订的时候,我们务必要注意逻辑思路清晰,只有认真值得一份教案我们的教学能力才会有所提高,下面是365文档网小编为您分享的分数的应用教案8篇,感谢您的参阅。

分数的应用教案8篇

分数的应用教案篇1

教学内容:

教材第25~26页的内容及练习。

教学目标:

1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能运用分数除以整数的计算方法解决实际问题。

教学重难点:

1.探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,能正确计算。

教学过程:

一、创设情景激趣揭题

1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

2.引入并板书课题:分数除法(一)

二、扶放结合探究新知

1.提问:如果把这张纸的4/7平均分成2份,每份是多少?

2.把这张纸的4/7平均分成3份,又该怎样解决?

3.引导归纳分数除以整数的意义及计算方法。

4.想一想;整数除法也有类似的规律吗?

5.填一填,验证猜想。

1÷4 1×1/4

7÷3 7×1/3

三、反馈矫正落实双基

1.出示26页试一试。

2.指导完成26页练一练的1~3题。

四、小结评价布置预习

1.引导小结

(1)这节课我们学习了什么知识?

(2)还有什么问题?

2.布置预习:27~28分数除法(二)

板书设计:

分数除法(一)

4/7÷2=4/7×1/2=2/7

4/7÷3=4/7×1/3=4/21

分数除以整数的意义,与整数除法的意义相同。

计算法则:分数除以整数(零除外),等于乘这个整数的倒数

分数的应用教案篇2

教学目标:

1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。

2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。

教学重点难点:

理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。

教具准备:

课件。

教学过程:

一、复习旧知,导入新课

1、师:同学们,今天这节数学课我们一起来研究百分数的应用。(板书:百分数)什么是百分数?你能说一个生活中的百分数吗?你怎么理解这个百分数?

2、师:因为百分数的意义使百分数在日常生活中的应用非常广泛,今天要研究的主题就是百分数的应用(补充板书:百分数的应用)

二、教学过程

活动一:创设情境,引出新知

1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?

2、课件出示情境,引导学生观察

师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看:

45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

3、师:根据这两个条件,你能提出什么问题?

生提问,师选择板书。

(1)、冰的体积是原来水的体积的百分之几?

(2)、原来水的体积是冰的体积的百分之几?

(3)、冰的体积比原来水的体积增加百分之几?

4、在这些问题中,我们能解决哪些问题?

师生共同解决,并将解决的问题擦掉。

活动二:理解“增加百分之几”。

1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?

2、学生用自己的方式理解“增加百分之几”的意思。

3、全班汇报,由口头理解的不清晰,引出线段草图。

4、对比书中的线段图和学生的线段草图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?

通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。

5、列式计算,数形结合,说出两个列式的含义

6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。

可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。

三、训练巩固

1、根据问句,说出谁和谁比,谁是单位“1”的量。

①女生人数是男生人数的百分之几?

②梨的质量是苹果质量的百分之几?

③降价了百分之几?

④增产了百分之几?

2、消费宝典

电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)

(引导学生先理解“降低百分之几”再列式计算。)

3、建设新农村

选一选:

光明村今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?

(1).(121-66)÷121

(2).66÷121

(3).66÷(121-66)

(让学生说出选择的依据。)

四、课堂小结

通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。

分数的应用教案篇3

教学目的

使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

教学过程

一、复习

1.口算下列各题。

2.把下列假分数改写成带分数。

3.把下列带分数改写成假分数。

让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

二、新课

1.教学例5。

教师出示例5:

教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

2.做教科书第39页中间做一做的题目。

让学生独立完成。做完后集体订正。

3.教学例6。

(1)准备题。

①的3倍是多少?

②的是多少?

③的是多少?

教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

教师让学生计算后集体订正。

(2)教学6。

教师出示例6:

教师指名说题目的条件和问题。

教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

教师:应该设什么数为未知数x?(设这个数为未知数x。)

让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

4.做教科书39页下面做一做题目。

让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

三、巩固练习

1.做练习十第1题第1行的小题。

让学生装独立完成。做完后集体订正。

2.做练习十第2题的前2个小题。

让学生装独立完成,做完后集体订正。

3.做练习十第3题的第(1)~(3)题。

第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

4.做练习十的第5题。

教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

四、作业

练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数的应用教案篇4

教材分析:

本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题、

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一、谈话激趣,复习辅垫

1、师生交流

师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。(课件出示)

2、复习旧知

师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

学生回答后说明理由。

师:算一算你们自己体内水分的质量吧!

生答

师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

生回答后出示:儿童的体重×5(4)=儿童体内水分的重量

35×5(4)=28(千克)

师:谁还能根据另一个信息写出等量关系式?

成人的体重×3(2)=成人体内的水分的重量

2、揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、引导探究,解决问题

1、课件出示例题。

2、合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3、学生汇报

生1:根据数量关系式:儿童的体重×5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。

28÷5(4)=35(千克)

4、比较算法

比较算术做法与方程做法的优缺点?

(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

5、对比小结

和前面复习题进行比较一下,看看这题和复习题有什么异同?

(1)看作单位“1”的数量相同,数量关系式相同。

(2)复习题单位“1”的量已知,用乘法计算;

例1单位“1”的量未知,可以用方程解答。

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6、试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

单位“1”是已知还是未知的?

根据学生回答画线段图。

根据题中的数量关系找学生列出等量关系式。

学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、联系实际,巩固提高

1、(投影)看图口头列式,并用一句话概括题中的等量关系。

2、练一练:

(1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

(2)、一个修路队修一条路,第一天修了全长的5(2),正好是160米,这条路全长是多少米?

3、对比练习

(1)一条路50千米,修了5(2),修了多少千米?

(2)一条路修了50千米,修了5(2),这条路全长是多少千米?

(3)一条路50千米,修了5(2)千米,还剩多少千米?

四、全课小结畅谈收获

①今天这节课我们研究了什么问题?

②解答分数除法应用题的关键是什么?

③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

设计意图:

一、从生活入手学数学。

?国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

四、有破度有层次地设计练习,提高学生的思维能力。

教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数的应用教案篇5

教学内容:

p29、p30 “百分数的应用(四)”

教学目标:

1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

教学重点:

进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

教学过程:

一、谈话引入。

课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

师:课前同学们到银行调查了有关储蓄的知识,哪个小组愿意和大家交流你们的调查情况。

组1:我知道人们把钱放到银行是有好处的。可以得到一些利息。

组2:现在银行可以办各种储蓄卡,如果到外地出差,不用带现金,只带卡就可以了,既方便又安全

组3:我们调查了存款的年利率。

存期(整存整取)

年利率 %

一年 2.25

二年 2.70

三年 3.24

五年 3.60

组4:我们知道国债和教育储蓄不收利息税,其他的要交20%的利息税。

师:同学们真了不起,了解了这么多。老师知道同学们在过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢?

生:当然是存到银行了。

二、探究思考。

师:是啊,存到银行不但能支援国家建设,到期还能得到利息。根据存款的种类和时间的长短,利率是不一样的。咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的?

生:我想存三年整存整取,时间长一些利息就会多。

生:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。

师:你知道得真多,活期存款的利率低一些。

师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。

(教师给出计算利息公式:利息=本金x年利率x年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)

板书

300 x 2.25% x 1

=6.75 (元)

300 x 3.24% x 3

=29.16 (元)

师:从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税?

学生汇报

6.75 x 20% = 29.16 x 20% =

师:那有没有不用交利息税的呢?

生:

师:对,只有国债和教育储蓄是不需要交利息税的。

三、练习巩固。

1、小明的爸爸打算把5000元钱存入银行(两年后用)。他如何存取才能得到最多的利息?

2、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少元钱?

3、把20xx元钱存入银行,整存整取五年,年利率是3.60%,利息税率为20%。到期后,的本金和利息共有多少元?交了多少利息税?

四、课堂总结

通过今天的学习你有什么收获?

课前布置学生分小组到银行调查利率并了解有关储蓄的知识。

激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。

提出“怎样处理这些钱”“存入银行有什么好处”等问题,使学生从中了解储蓄的意义。

学生己有了储蓄的知识基础,对于存款的方式让学生自己讨论,在讨论交流中,学生感受到,需要根据实际情况选择合理的储蓄方式。再引出计算利息的方法。

由于讨论的问题和数据都来自于学生,这样就使计算利息更具有实际意义,学生的学习兴趣和积极性也会大大提高。

拓展学生的思维。综合应用所学的知识解决实际问题。

结合实际对学生进行思想道德教育,珍惜现在的学习机会,支援贫困地区的失学儿童。

分数的应用教案篇6

教学目标

1.使学生了解本金、利息、利率、利息税的含义.

2.理解算理,使学生学会计算定期存款的利息.

3.初步掌握去银行存钱的本领.

教学重点

1.储蓄知识相关概念的建立.

2.一年以上定期存款利息的计算.

教学难点

“年利率”概念的理解.

教学过程

一、谈话导入

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

二、新授教学

(一)建立相关储蓄知识概念.

1.建立本金、利息、利率、利息税的概念.

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

(2)教师板书:

存入银行的钱叫做本金.

取款时银行多支付的钱叫做利息.

利息与本金的比值叫做利率.

2.出示一年期存单.

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)

教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

4.出示国家最新公布的定期存款年利率表.

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.

(3)那什么是年利率呢?

(二)相关计算

张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

1.帮助张华填写存单.

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结

请你说一说如何计算“利息”?

三、课堂练习

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)800×11.7%

(2)800×11.7%×2

(3)800×(1+11.7%)

(4)800+800×11.7%×2×(1-20%)

3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

四、巩固提高

(一)填写一张存款单.

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?

五、课堂总结

通过今天的学习,你有什么收获?

六、布置作业

1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?

2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?

七、板书设计

百分数的应用

本金 利息 利息税 利国利民

利率:利息与本金的比值叫利率.

利息=本金×利率×时间

探究活动

购物方案

活动目的

1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.

2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.

3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.

活动过程

1.教师出示价格表

a套餐原价:16.90元 现价:10.00元

b套餐原价:15.40元 现价:10.00元

c套餐原价:15.00元 现价:10.00元

d套餐原价:15.00元 现价:10.00元

e套餐原价:18.00元 现价:10.00元

f套餐原价:14.40元 现价:10.00元

学生讨论:如果你买,你选哪一套?

2.教师出示价格表

a套餐原价:16.90元 现价:12.00元

b套餐原价:15.40元 现价:10.78元

c套餐原价:15.00元 现价:12.00元

d套餐原价:15.00元 现价:12.00元

e套餐原价:18.00元 现价:13.50元

f套餐原价:14.40元 现价:12.24元

学生讨论:现在买哪一套最合算呢?

3.教师出示价格表

每套18.00元,冰淇淋7.00元.

第一周:每套16.20元;买一个冰淇淋回赠2元券.

第二周:降价20%;买一个冰淇淋回赠2元券.

第三周:买5套以上打七折;买一个冰淇淋回赠2元券.

学生讨论:

(1)你准备在哪一周买

(2)你打算怎么买?

(3)你设计方案的优点是什么?

分数的应用教案篇7

学情分析:

学生在五年级下学期已经学习了百分数的意义和读写、百分数和分数、小数的互化,并学会简单运用百分数的意决一些生活中的问题,使学生进一步体会百分数的意义,也为后续学习比较复杂的百分数问题打基础。

教学内容:

北师大版教材六年级数学上册第二单元第一小节的内容

百分数的应用(一)求一个数比另一个数多或少百分之几,是在学生五年级下册已学习了百分数的意义和读写、百分数和分数、小数的互化,并学会简单运用百分数的意决一些生活中的问题,是在此基础上展开的,求一个数比另一个数多或少百分之几的问题,实际上还是求一个数是另一个数的百分之几问题的发展,只不过一个量题目中没有直接给出。通过解决此类问题使学生进一步体会百分数的意义,也为后续学习比较复杂的百分数问题打基础。

教学目标:

1、知识与技能:在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。

2、过程与方法:能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

3、情感态度与价值观:培养学生运用数学知识解释生活的能力,激发数学学习的兴趣。

重点难点:

1、在具体情境中理解“增加百分之几”或“少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“少百分之几”,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

设计理念:

“学生能尝试,尝试能成功。”本节课采用五步六环节的尝试教学法,始终坚持先练后讲,先试后导,先学后教的理念,尊重学生已有的知识水平。在此基础上借鉴课堂实录中的一些设计把学生想要学的想要理解的全部交待清楚了。

教学过程:

一、基本训练、

1、先找出单位“1”的量,再填空。

(1)现价是原价的百分之几?

用()÷()

(2)实际产量是计划产量的120%。

实际产量比计划产量多()%

(3)红花朵数是黄花朵数的80%

红花朵数比黄花少()%

2、思考下面的问题

甲数是5,乙数是4

(1)甲数是乙数的几分之几?

(2)甲数是乙数的百分之几?

(3)乙数是甲数的几分之几?

(4)乙数是甲数的百分之几?

(5)甲数比乙数多几分之几?

(6)乙数比甲数少几分之几?

3、说说下面这些百分数表示什么意思

(1)甲队比乙队多修25%

(2)今年比去年多植树30%

(3)现价比原价减少了20%

(4)红花朵数比黄花少17%

设计意图:前两道是基本训练题,是为本课新知识的顺利展开扫清障碍,而第三题“说说百分数表示的意思”是一道为新课展开做迁移的准备题,本题在我模仿的视频中本来是一道巩固练习题,为了帮助学生理解多百分之几或少百分之几的意义,进而尝试时取得成功,我设计为准备题。

二、导入新课

师:今天这节课就让我们一起来学习有关百分数的应用(一),即求“一个数比另一个数多或少百分之几”的问题。(教师板书课题)

师:通过本节课的学习,同学们要掌握求求“一个数比另一个数多或少百分之几”问题的计算方法。

?设计意图:开门见山直接导入新课,及早出示课题,使学生有了注意方向,从而提高了课堂效率。】

三、进行新课

1、出示尝试题

六(2)班有男生10人,女生15人,女生比男生多百分之几?

请学生试着解答,教师巡视

2、自学课本

师:请同学们打开课本23页,边读边思考,回答自学提示里面的4个问题。

[自学提示]

仔细阅读课本第23页,回答下面的问题。

1、例题给我们提供了哪些信息?要解决什么问题?

2、“增加百分之几”是什么意思?

3、计算一个数比另一个数增加(多)百分之几的问题,书中有几种解答方法?思路各是怎样的呢?

4、比较这两种算法,你喜欢哪种?为什么?

要求:先独立思考,不懂的可以在小组内讨论交流。

生:一边读书一边思考问题。遇到不懂的问题在小组内交流。

?设计意图:让学生通过自学提示的帮助来自学课本,使学生从课本中初步获取知识具有实效性。】

3、再次尝试

盒子里有50立方厘米的冰,化成水后,水的体积约为45立方厘米。水的体积比原来冰的体积减少了百分之几?

4、学生讨论

师:解决“一个数比另一个数多或少百分之几”的问题一般有几种解法?

生:两种

师:第1种算法是怎样的?

生:找准单位“1”的量后,先求出多或少的部分,再用多或少的部分除以单位“1”就可以了。

师:那第2种算法呢?

生:先用一个数除以单位“1”

的数,再同单位“1”比较。

5、教师讲解

师:从上面的算法看出,求一个数比另一个数多或少百分之几”的问题先要找准单位“1”

一般有两种解法。第1种解法是先求出多或少的部分,再用多或少的部分除以单位“1”的量就可以了。第2种算法是如果比单位“1”多的时候就用一个数除以另一个数减1;如果比单位1少的时候就用1减一个数除以另一个数的商。

注意:计算中遇到除不尽时,一般保留三位小数。(百分号前面的数保留一位小数)

四、巩固练习

1、五(1)班有女生20人,男生25人,女生人数比男生少百分之几?

2、电饭煲原价220元,现价160元,电饭褒的价格降低了百分之几?(百分号前保留一位小数)

3、光明村今年每户拥有彩电121台,比去年增加66台,去年每百户拥有彩电多少台?今年比去年增长了百份之几?

五、课堂作业

课本第24页“练一练”第2、4题

学有余力的同学完成本题

光明村今年每户拥有彩电121台,比去年增加66台,

1、今年是去年的百分之几?

2、去年是今年的百分之几?

3、今年比去年增长百分之几?

4、去年比今年减少百分之几?

六、课堂小结

通过今天的学习,你有哪些收获?

分数的应用教案篇8

教学目标

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学工具

多媒体课件,圆形纸片,剪??

教学过程

一、创设情境,导入新课,

师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

怎么列式?生:8÷4=2(个)

2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

怎么列式?生:1÷4=

二、动手操作,探索新知

1、探索一个物体平均分,体会分数与除法的关系。

(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

生独立思考并回答。

全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

2、探索多个物体平均分,体会分数与除法的关系。

师:把3个蛋糕平均分给4个人,每人分得多少个?

师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

3、总结概括分数与除法之间的关系。

1÷4=(个)3÷4=(个)

5÷7=(个)3÷5=(个)

师:观察黑板上的这些算式,你发现了什么?

三、观察算式,概括分数与除法的关系。

(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

(2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

师强调:相当于

(3)师:请每个同学看着这些算式说一说分数与除法的关系。

(师板书):被除数÷除数=被除数/除数

提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

三、练习巩固应用

1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

四、全课小结今天这堂课你有什么收获?还有什么问题吗?