为较好的完成新学期的教学任务,我们需要制定一份详细的教案,教案是老师为了顺利开展教学提前制订的应用文种,范文社小编今天就为您带来了3的倍数教案7篇,相信一定会对你有所帮助。
3的倍数教案篇1
学习内容:
人教版小学数学五年级下册第23、24页。
学习目标:
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
学习重点:
能理解质数、合数的意义,正确判断一个数是质数还是合数。
学习难点:
用恰当的方法找出100以内的质数;会给自然数分类。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?
我的想法________________________________
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的质数都是奇数?(2)是不是所有的奇数都是质数?
(3)是不是所有的'合数都是偶数?(4)是不是所有的偶数都是合数?
6.组内交流。
3的倍数教案篇2
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
3的倍数教案篇3
教学目标
1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。
2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。
3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。
教学重点
理解3的倍数的特征
教学难点
探索活动中,发现规律,并归纳出3的倍数的特征。
教学过程
一、谈话引入,提示课题
我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)
二、探索交流、获取新知
1、出示1~100数字表格
2、找出3的倍数,并做出记号
3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)
⑴任意选择几个3的倍数。如42、87、93。
⑵板书在黑板上
⑶交换个位和十位上的数字,得到24、78、39。
⑷判断这三个数是不是3的倍数
⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。
⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?
⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)
⑻验证、归纳
① 让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。
② 发现规律,进行归纳
⑼尝试检验:①出示84、92、102、315。②利用规律进行检验。③小结:这个规律对三位数一样成立。
三、巩固练习
第7页的试一试和练一练
四、板书设计:
3的倍数的特征
3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。
五、课后反思:
略
3的倍数教案篇4
教学内容:
苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。
教学目标:
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
教学重点:
认识3的倍数的特征。
教学难点:
研究并发现3的倍数的特征。
教学准备:
准备计数器教具和学具。
教学过程:
一、激活经验
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)
二、学习新知
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
启发:当你发现3的倍数的特征时,你对数学有什么感觉?
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?
三、练习巩固
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
3的倍数教案篇5
一、教学内容
1、因数和倍数
2、2、5、3的倍数的特征
3、质数和合数
二、教学目标
1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2、使学生通过自主探索,掌握2、5、3的倍数的特征。
3、逐步培养学生的数学抽象能力。
三、编排特点
1、精简概念,减轻学生记忆负担。
三方面的调整:
a、不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
b、不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
c、公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2、注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
四、具体编排
1、因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的'特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2、2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3、质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
五、教学建议
1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2、要注意培养学生的抽象思维能力。
3的倍数教案篇6
知识与技能:
1、学生会正确判断一个数是否是3的倍数。
过程与方法:
2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
情感态度价值观:
3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:
1、掌握3的倍数的特征。
2、能正确判断一个数是否是3的倍数。
教学过程设计:
一、复习引新
1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?
说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?
2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)
二、探索猜想,初步感知
师:3的倍数有什么特征?
1、学生进行猜想。
(1)个位上是3、6、9的数是3的倍数。
(2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。
(3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的引导。
2、可能出现的问题。
(1)猜测个位上是3、6、9的数是3的倍数。
(2)个位上能被3整除的数且被3整除。
3、探索猜想。
(1)学生用3、4、5三个数字组成是3的倍数的3位数。
(2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的内容。
(3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。
4、验证猜想。
(1)让学生举例子对猜想的结论进行验证。
(2)在这个环节中,学生有可能也会发现以下情况:
①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。
②26个位上的数是6,但它不是3的倍数。
(3)猜想的结论不成立。
(4)让学生对猜想结论不成立的这个问题提出自己的看法。
师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。
三、自主探索,总结3倍数的特征
1、在质疑中引导学生探究3的倍数的特征。
师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的倍数的百以内的数表,如下图。)
2、引导观察。
(1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)
(2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。
(3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。
3、教师引领。
(1)斜着观察你发现了什么?
(2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?
(3)试着概括出3的倍数特征。
4、总结3的倍数的特征。
一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。
5 、检验结论。
(1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?
(2)利用100以内数表来验证。
(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……
(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。
四、巩固应用
1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2、3和5的倍数。
2、完成教材19页的“做一做”
五、课堂小结:
这节课你有什么收获?
板书设计:
3的倍数的特征
一个数各位上的数的和是3的倍数,这个数就是3的倍数
教学反思:
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。
3的倍数教案篇7
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)
齐读p12的注意。
二、新授
(一)找因数
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,的是几?
看来,任何一个数的因数,最小的一定是( ),而的一定是( )。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报 3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数 3的倍数 5的倍数
2、4、6、8…… 3、6、9…… 5、10、15……
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业
完成练习二1~4题