三角梯教案5篇

时间:2023-03-25 作者:Youaremine

作为教育工作者制定教案是我们必须掌握的工作技能,教案是老师为了调动学生积极性提前起草的文字报告,范文社小编今天就为您带来了三角梯教案5篇,相信一定会对你有所帮助。

三角梯教案5篇

三角梯教案篇1

教学目标:

1. 掌握三角形内角和定理及其推论;

2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:

三角形内角和定理及其推论。

教学难点:

三角形内角和定理的证明

教学用具:

直尺、微机

教学方法:

互动式,谈话法

教学过程:

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2 你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1 观察:三个内角拼成了一个

什么角?问题2 此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3 由图中ab与cd的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值

,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

问题2 三角形一个外角与它不相邻的两个内角有何关系?

问题3 三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

引导学生分析并严格书写解题过程

三角梯教案篇2

活动设计

1、中班上学期对幼儿数学图形发展的要求是:进一步认识三角形、正方形、长方形、梯形的特点,发现图形之间的关系。幼儿经过小班对图形的初步学习后,中班逐渐对图形产生了浓厚的兴趣。

2、《幼儿园教育指导纲要(试行)》中指出:为幼儿的探究活动宽松的环境,让每个幼儿都有机会参与尝试、支持、鼓励他们大胆提出问题,发表不同意见,尊重他人的观点。丰富的可操作性的材料,为每个幼儿都能运用多种感官、多种方式进行探索活动活动的条件。通过引导幼儿积极参加小组讨论、探索等方式,培养幼儿合作学习的意识和能力,学习用多种方式表现、交流、分享探索的过程和结果。

3、在区域活动和日常游戏中,孩子们喜欢用不同的图形组合,拼凑出新的图形和造型。本节课着重于用同样大小的等腰直角三角形试一试、拼一拼。怎样让它变得有趣呢?于是便以孩子最喜爱的动画故事为情境,设计了由易到难、层层递进,由集中到发散的闯关游戏。孩子们可以通过一轮又一轮的闯关,激发兴趣。通过获得小红旗作为奖励,体验到成功带来的成就感,更能提高他们的观察能力,思维能力和动手操作能力。

活动目标

1、尝试用等腰直角三角形拼出长方形、正方形、大三角形和梯形。

2、通过试一试、拼一拼理解部分与整体的关系。

3、在闯关活动中体验成就感,感受拼图活动带来的快乐。

活动准备

物质准备:

1、教具:磁性三角形若干,闯关图一份,同样大小的三角形12个。

2、学具:同样大小的三角形若干,小旗若干(上有牙签),每人一块底板。

经验准备:

1、了解闯关游戏的含义,玩过闯关游戏。

2、认识并了解三角形、正方形、长方形、梯形、菱形等的特点。

3、在区域及其他游戏活动中尝试用两个三角形拼出另一种图形或用三个及以上的三角形拼出不同的造型。

活动过程

一、情景导入,引发兴趣。

师:你们知道吗?昨天晚上美羊羊又被灰太狼抓走了,她感到特别伤心。

喜洋洋:小朋友,你们愿意帮我一起闯关救出美羊羊吗?”

二、层层深入,拼图闯关

1、师:灰太狼到底给我们设置了什么样的障碍呢?我们一起看一看。请看第一关!(出示第一关闯关图)

①观察第一关闯关图,了解拼图要求。

这是什么图形?有几个三角形?这三个三角形拼成了什么图形?原来灰太狼要小朋友用三个三角形拼成一个梯形。你们能完成任务吗?

②根据图示闯关拼图。

③交流拼图方法:先用两个三角形一样长的边放在一起靠靠拢,拼成一个正方形,边上再加上一个小梯子,就拼成了梯形。

2、第二关灰太狼又给我们出了什么难题呢?(出示第二关闯关图)

①了解第三关闯关要求。是什么图形?有几个三角形?灰太狼要让小朋友用4个三角形拼成一个新的图形。每个小朋友要完成三种不同的拼法才算闯关成功哦!开始吧!

②自主完成闯关拼图。

③交流:你拼成了什么图形?是怎么拼的?:四个三角形可以拼成长方形、正方形、大三角形、梯形、平行四边形。

④没有完成三种拼法的小朋友再试一试哦!

3、第三关是不是更难了呢?为自己加加油吧!(出示闯关图)

①这是什么图形?是由几个小三角形拼成的?数一数呢?灰太狼要小朋友用8个小三角形拼成一个大三角形!

②尝试闯关拼图。

③交流展示:你拼成了什么图形?

三、活动结束,。

师:小朋友你们的小手可真巧!用三角形拼成了各种各样的图形,顺利打败了灰太狼,救出了美洋洋,灰太狼说:“我一定会回来的!”为自己鼓鼓掌吧!

三角梯教案篇3

[教学内容]

北师大版小学数学四年级下册《三角形三条边之间的关系》

[教学目标]

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

[教学重、难点]

探索并发现三角形任意两边之和大于第三边。

[教学准备]

学生、老师各准备几个长短不等的小棒、直尺、探究报告单。

[教学过程]

一、摆一摆,激发探究欲望

师:前一节课我们学习了三角形,给你三根小棒,谁能到黑板上围成一个三角形?

(指两名同学到黑板上来。提供的小棒一组能摆成三角形,另一组摆不成三角形。)

在学生摆不出来时,引导学生发现不是任意三根小棒都能摆出三角形来。

师:若想再摆个三角形,你有解决的办法吗?

看来,要想摆成一个三角形,对三条边的长度是有要求的。这节课我们就来研究三角形边的关系。(板书课题)

师:谁来猜一猜,这三条边究竟有什么样的关系呢?

师:你的猜想是否正确呢,我们还是用实验来验证吧。

[反思]这个环节,我首先让学生围三角形,第一名学生不费吹灰之力很顺利地围成了三角形,第二名学生怎么也围不成。这样使学生在具体的操作过程中产生思维冲突,从而提出“数学问题”,有效地激发了学生的探究欲望。课一开始,就牢牢的抓住了学生的心,让学生饶有兴趣的投入到下一轮的学习中去。

二、操作验证,揭示三边关系

(一)分组研究,四人小组长拿出准备好的四组小棒。

出示实验要求:

1、 量出每组小棒的长度。

2、 将三根小棒首尾相接,看是否能围成三角形。

3、 把任意两条边的长度加起来,再与第三边进行比较。(用式子表示)

4、 小组讨论,你发现了什么?将实验结果填写在探究报告单上。

(二)小组汇报交流实验结果

结论:三角形任意两边的和大于第三边。(引导学生理解“任意”的意思)

再用这个结论解释实验中围不成三角形的原因。

[反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。

三、应用与拓展

1、判断下面几组线段能否围成三角形,为什么?

(引导学生理解快速判断的方法)

(1)1厘米、3厘米、5厘米

(2)3厘米、5厘米、2厘米

(3)11厘米、6厘米、7厘米

[反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中我充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们引导学生发现,快速判断的方法,使学生在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。

2、小华上学走哪条路近?为什么?(引导学生从多角度解释)

书店

学校

小华家

[反思]:教材是学习的载体,我充分挖掘教材知识之间的联系,。这副情境图既能靠直觉来判断,又能用三角形三条边的关系来解释,还可以用“连接两点的线中,线段最短”来解释。这样既拓展了学生思维的空间,感受到解决问题方法多样性,又领悟到知识与实际的结合,从而使学生认识到生活中处处有数学。

3、一个三角形,其中两条边长是4厘米和6厘米,第三条边长是多少厘米?

(引导学生探究第三边的取值范围)

[反思]:此题设计目的是引导学生发现三角形第三边的取值范围是大于另两边的差,小于另两边的和。教学中开始学生逐渐答出了3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米,接着就沉默了,我就提出了9.2厘米行不行?学生略一思考得出结论:行。于是他们的思维又活跃起来,9.6厘米、9.9厘米……当学生发现小数部分是无限的时,得出结论第三边小于10厘米大于3厘米就可以,于是我又提出问题:现在同学们找到的最小答案是3厘米,2.5厘米行不行?学生经过思考得出答案:第三边要小于10而大于2。由于时间关系,当时我有些着急,直接将我想要学生了解的“第三边的取值范围要大于另两边的差,小于另两边的和”这个结论直接说了出来,结果效果并不是太好。不如让学生自己课下探究“三角形两边之差与第三边的关系”更好。虽然此处处理并不是很恰当,但在这道题中师生、生生之间思维的碰撞,激发了学生探究的意识,培养了学生的质疑探究的能力。

4、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根3米长的木料,假如你是设计师第三根木料会准备多长?并说明理由。

(引导学生实际生活中要讲究美观、实用)

[反思]此题是上一道题的延伸,是培养学生应用数学知识合理解决生活问题的能力。

5、 用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?

[反思]这是一道要同学动手探究的问题,作为家庭作业学生更愿意做这样的题。

本课总结:同学们的表现非常棒,不仅能猜想,而且能通过实验进行验证,并利用所学知识解决实际问题

三角梯教案篇4

教学目标:

1、使学生通过直观认识长方体和正方体的形状以及特征。

2、通过学生动手拼一拼、摆一摆,认识长方体和正方体的特征,能辨认和区别这两种图形。

教学重点:认识长方体和正方体的形状以及特征

教学难点:能辨认和区别

教学方法:引导探究法

教学准备:长方形、正方形纸片、小棒

教学过程:

一、复习。

1、出示一些长方体和正方体的实物。

让学生指出哪些是长方体,哪些是正方体。

2、在长方体下面的括号里面画“ ”,正方体的下面括号里面“√”。

3、口答。

长方体有几个面?正方体有几个面?

二、新授。

1、取出两个正方体,可以拼成什么图形?

2、取出三个正方体,可以拼成什么图形?

3、取出八个正方体,可以拼成什么图形?

教师:通过学生自由拼摆,让学生发现长方体和正方体的区别以及之间的关系。

4、取出四个长方体,如:可以拼成什么图形?(一种拼成长方体,一种拼成正方体)

三、巩固练习。

1、完成教科书p5、1。

2、完成教科书p5第5题。

学生独立完成,全班讲评。

3、完成教科书p7第7题。

先让学生观察长方体的上面、前面和右面,并懂得上下、前后以及左右之间的关系,然后进行正确的划线连接。

4、完成教科书p6第五题。

观察:(1)第一行和第三行有什么关系?

(2)第一行和哪几行有关系?

(3)第二行和哪几行有关系?

(4)你发现了什么?

(5)图中缺了几块?你是怎样得出来的?

5、完成教科书p7第六题。

6、完成教科书p7第8题

根据正方体的平面展开图,让学生想象正方体的六个面上分别标的是哪些数字,教师出示实物演示。

三角梯教案篇5

学习目标:

(1) 知识与技能 :

掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法 :

通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:

通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习

二.回顾课本

1、三角形的内角和是多少度?你是怎样知道的?

2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的步骤

①画图

②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

① 如图1,延长bc得到一平角bcd,然后以ca为一边,在△abc的外部画a。

② 如图1,延长bc,过c作ce∥ab

③ 如图2,过a作de∥ab

④ 如图3,在bc边上任取一点p,作pr∥ab,pq∥ac。

三、巩固练习

四、学习小结:

(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测:

六、布置作业